躯干耦合双域模型强T-周期解的Faedo-Galerkin近似的强收敛性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Raúl Felipe-Sosa, A. Fraguela-Collar, Yofre H. Garc'ia G'omez
{"title":"躯干耦合双域模型强T-周期解的Faedo-Galerkin近似的强收敛性","authors":"Raúl Felipe-Sosa, A. Fraguela-Collar, Yofre H. Garc'ia G'omez","doi":"10.1051/mmnp/2023012","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the convergence of the Faedo - Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where $T$ is the period of activation of the inner wall of heart. First, we define the torso-coupled bi-domain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of equations associated with torso-coupled bidomain model and give the definition of strong solution. We prove that the Faedo - Galerkin's approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo - Galerkin fully converge to a strong solution of the Cauchy problem. Finally, this results are used for showing the existence a strong $T$ -periodic solution.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bi-domain model\",\"authors\":\"Raúl Felipe-Sosa, A. Fraguela-Collar, Yofre H. Garc'ia G'omez\",\"doi\":\"10.1051/mmnp/2023012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the convergence of the Faedo - Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where $T$ is the period of activation of the inner wall of heart. First, we define the torso-coupled bi-domain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of equations associated with torso-coupled bidomain model and give the definition of strong solution. We prove that the Faedo - Galerkin's approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo - Galerkin fully converge to a strong solution of the Cauchy problem. Finally, this results are used for showing the existence a strong $T$ -periodic solution.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2023012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了Faedo-Galerkin近似在强意义上对躯干耦合双域模型的强T周期解的收敛性,其中$T$是心脏内壁的激活周期。首先,我们定义了躯干耦合双域算子,并证明了它的一些更重要的性质。然后,我们定义了与躯干耦合双域模型相关的抽象演化方程组,并给出了强解的定义。我们证明了Faedo-Galerkin近似具有强解的正则性,并且我们发现在初始条件上可以施加一些限制,使得该序列完全收敛于Cauchy问题的强解。最后,用这个结果证明了强$T$-周期解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bi-domain model
In this paper, we investigate the convergence of the Faedo - Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where $T$ is the period of activation of the inner wall of heart. First, we define the torso-coupled bi-domain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of equations associated with torso-coupled bidomain model and give the definition of strong solution. We prove that the Faedo - Galerkin's approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo - Galerkin fully converge to a strong solution of the Cauchy problem. Finally, this results are used for showing the existence a strong $T$ -periodic solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信