Alejandro BANDERA MORENO, Macarena Gómez-Mármol, S. Fernández-García, A. Vidal
{"title":"A MULTIPLE TIMESCALE NETWORK MODEL OF INTRACELLULAR\nCALCIUM CONCENTRATIONS IN COUPLED NEURONS: INSIGHTS FROM\nROM SIMULATIONS.","authors":"Alejandro BANDERA MORENO, Macarena Gómez-Mármol, S. Fernández-García, A. Vidal","doi":"10.1051/mmnp/2022016","DOIUrl":null,"url":null,"abstract":"In [16], the authors analyzed the synchronization features between two identical 3D slow-fast oscillators, symmetrically coupled, built as an extension of the FitzHugh–Nagumo dynamics generating Mixed-Mode Oscillations. The third variable, which is slow, represents the intracellular calcium concentration in neurons. Here, we consider an extension of this model in two directions. First, we consider heterogeneity among cells and analyze the coupling of two oscillators with different values for one parameter tuning the intrinsic frequency. We identify new patterns of antiphasic synchronization, with non-trivial signatures and that exhibit a Devil’s Staircase phenomenon in transitions. Second, we introduce a network of N cells divided into two clusters: the coupling between neurons in each cluster is excitatory, while between the two clusters is inhibitory. Such system models the interactions between neurons tending to synchronization in two subpopulations inhibiting each other, like ipsi- and contra-lateral motoneurons assemblies. To perform the numerical simulations when N is large, as an initial step towards the network analysis, we consider Reduced Order Models to save computational costs. We present the numerical reduction results in a network of 100 cells. To validate the numerical reduction method, we compare the outputs and CPU times obtained in different cases.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
In [16], the authors analyzed the synchronization features between two identical 3D slow-fast oscillators, symmetrically coupled, built as an extension of the FitzHugh–Nagumo dynamics generating Mixed-Mode Oscillations. The third variable, which is slow, represents the intracellular calcium concentration in neurons. Here, we consider an extension of this model in two directions. First, we consider heterogeneity among cells and analyze the coupling of two oscillators with different values for one parameter tuning the intrinsic frequency. We identify new patterns of antiphasic synchronization, with non-trivial signatures and that exhibit a Devil’s Staircase phenomenon in transitions. Second, we introduce a network of N cells divided into two clusters: the coupling between neurons in each cluster is excitatory, while between the two clusters is inhibitory. Such system models the interactions between neurons tending to synchronization in two subpopulations inhibiting each other, like ipsi- and contra-lateral motoneurons assemblies. To perform the numerical simulations when N is large, as an initial step towards the network analysis, we consider Reduced Order Models to save computational costs. We present the numerical reduction results in a network of 100 cells. To validate the numerical reduction method, we compare the outputs and CPU times obtained in different cases.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.