Marine Drugs最新文献

筛选
英文 中文
Enhancing Electrospinnability of Chitosan Membranes in Low-Humidity Environments by Sodium Chloride Addition. 通过添加氯化钠增强壳聚糖膜在低湿度环境中的电纺性
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-27 DOI: 10.3390/md22100443
Hengjie Su, Xiaoqi Chen, Linna Mao, Ting Li
{"title":"Enhancing Electrospinnability of Chitosan Membranes in Low-Humidity Environments by Sodium Chloride Addition.","authors":"Hengjie Su, Xiaoqi Chen, Linna Mao, Ting Li","doi":"10.3390/md22100443","DOIUrl":"https://doi.org/10.3390/md22100443","url":null,"abstract":"<p><p>The electrospinning of pure chitosan nanofibers is highly sensitive to environmental humidity, which limits their production consistency and applicability. This study investigates the addition of sodium chloride (NaCl) to chitosan solutions to enhance spinnability and mitigate the effigurefects of low humidity. NaCl was incorporated into the electrospun chitosan solution, leading to increased conductivity and decreased viscosity. These modifications improved the electrospinning process. Comparative analyses between chitosan membranes (CM) and sodium-chloride-added chitosan membranes (SCM) revealed no significant differences in chemical structure, mechanical strength, or in vitro cell proliferation. This indicates that the addition of 1% (<i>w</i>/<i>v</i>) NaCl does not adversely affect the fundamental properties of the chitosan membranes. The findings demonstrate that NaCl addition is a viable strategy for producing electrospun chitosan nanofibers in low-humidity environments, maintaining their physicochemical properties while enhancing spinnability.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terpenoids from the Soft Coral Sinularia densa Collected in the South China Sea. 从中国南海采集的软珊瑚 Sinularia densa 中提取的萜类化合物。
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-27 DOI: 10.3390/md22100442
Cili Wang, Jiarui Zhang, Kai Li, Junjie Yang, Lei Li, Sen Wang, Hu Hou, Pinglin Li
{"title":"Terpenoids from the Soft Coral <i>Sinularia densa</i> Collected in the South China Sea.","authors":"Cili Wang, Jiarui Zhang, Kai Li, Junjie Yang, Lei Li, Sen Wang, Hu Hou, Pinglin Li","doi":"10.3390/md22100442","DOIUrl":"https://doi.org/10.3390/md22100442","url":null,"abstract":"<p><p>The chemical investigation of the South China Sea soft coral <i>Sinularia densa</i> has resulted in the isolation of seven new terpenoids, including two new meroterpenoids, namely sinudenoids F-G (<b>1</b>-<b>2</b>), and five new cembranes, namely sinudenoids H-L (<b>3</b>-<b>7</b>). Their structures and absolute configurations were elucidated based on extensive analyses of spectroscopic data, single-crystal X-ray diffraction, comparison with the literature data, and quantum chemical calculations. Among them, sinudenoid F (<b>1</b>) and sinudenoid G (<b>2</b>) are rare meroterpenoids featuring a methyl benzoate core. Sinudenoid H (<b>3</b>) possesses a rare carbon skeleton of 8, 19-bisnorfuranocembrenolide, which is the second reported compound with this skeleton. In a bioassay, sinudenoid H (<b>3</b>) exhibited better anti-inflammatory activity compared to the positive control indomethacin at 20 µM in CuSO<sub>4</sub>-treated transgenic fluorescent zebrafish. Moreover, sinudenoid J (<b>5</b>) and sinudenoid L (<b>7</b>) exhibited moderate anti-thrombotic activity in arachidonic acid (AA)-induced thrombotic zebrafish at 20 µM.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation. 通过磁控溅射和海藻酸-钙离子络合制备铜涂层纤维素无纺布及其生化活性
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100436
Małgorzata Świerczyńska, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak, Marcin H Kudzin
{"title":"Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation.","authors":"Małgorzata Świerczyńska, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak, Marcin H Kudzin","doi":"10.3390/md22100436","DOIUrl":"https://doi.org/10.3390/md22100436","url":null,"abstract":"<p><p>Alginate-based materials have gained significant recognition in the medical industry due to their favorable biochemical properties. As a continuation of our previous studies, we have introduced a new composite consisting of cellulose nonwoven fabric charged with a metallic copper core (CNW-Cu<sup>0</sup>) covered with a calcium alginate (ALG<sup>-</sup>Ca<sup>2+</sup>) layer. The preparation process for these materials involved three main steps: coating the cellulose nonwoven fabric with copper via magnetron sputtering (CNW → CNW-Cu<sup>0</sup>), subsequent deposition with sodium alginate (CNW-Cu<sup>0</sup> → CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Na<sup>+</sup>), followed by cross-linking the alginate chains with calcium ions (CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Na<sup>+</sup> → CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup>). The primary objective of the work was to supply these composites with such biological attributes as antibacterial and hemostatic activity. Namely, equipping the antibacterial materials (copper action on representative Gram-positive and Gram-negative bacteria and fungal strains) with induction of blood plasma clotting processes (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). We determined the effect of CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> materials on the viability of Peripheral blood mononuclear (PBM) cells. Moreover, we studied the interactions of CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> materials with DNA using the relaxation plasmid assay. However, results showed CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup>'s cytotoxic properties against PBM cells in a time-dependent manner. Furthermore, the CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> composite exhibited the potential to interact directly with DNA. The results demonstrated that the CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> composites synthesized show promising potential for wound dressing applications.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brevianamide F Exerts Antithrombotic Effects by Modulating the MAPK Signaling Pathway and Coagulation Cascade. 布雷维那酰胺 F 通过调节 MAPK 信号通路和凝血级联发挥抗血栓作用
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100439
Huiwen Zhang, Chen Sun, Qing Xia, Peihai Li, Kechun Liu, Yun Zhang
{"title":"Brevianamide F Exerts Antithrombotic Effects by Modulating the MAPK Signaling Pathway and Coagulation Cascade.","authors":"Huiwen Zhang, Chen Sun, Qing Xia, Peihai Li, Kechun Liu, Yun Zhang","doi":"10.3390/md22100439","DOIUrl":"https://doi.org/10.3390/md22100439","url":null,"abstract":"<p><p>Existing antithrombotic drugs have side effects such as bleeding, and there is an urgent need to discover antithrombotic drugs with better efficacy and fewer side effects. In this study, a zebrafish thrombosis model was used to evaluate the antithrombotic activity and mechanism of Brevianamide F, a deep-sea natural product, with transcriptome sequencing analysis, RT-qPCR analysis, and molecular docking. The results revealed that Brevianamide F significantly attenuated the degree of platelet aggregation in the thrombus model zebrafish, leading to an increase in the number of circulating platelets, an augmentation in the return of blood to the heart, an elevated heart rate, and a significant restoration of caudal blood flow velocity. Transcriptome sequencing and RT-qPCR validation revealed that Brevianamide F may exert antithrombotic effects through the modulation of the MAPK signaling pathway and the coagulation cascade reaction. Molecular docking analysis further confirmed this result. This study provides a reference for the development of therapeutic drugs for thrombosis.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Extraction of Lipids, β-Carotene, and Polyphenolic Compounds from Wet Microalga Dunaliella salina by Liquefied Dimethyl Ether. 用液化二甲醚直接提取湿微藻杜纳藻中的脂质、β-胡萝卜素和多酚类化合物
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100438
Hideki Kanda, Kaito Kusumi, Li Zhu, Tao Wang
{"title":"Direct Extraction of Lipids, β-Carotene, and Polyphenolic Compounds from Wet Microalga <i>Dunaliella salina</i> by Liquefied Dimethyl Ether.","authors":"Hideki Kanda, Kaito Kusumi, Li Zhu, Tao Wang","doi":"10.3390/md22100438","DOIUrl":"https://doi.org/10.3390/md22100438","url":null,"abstract":"<p><p>Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet <i>Dunaliella salina</i> using liquefied dimethyl ether (DME), which is effective in lipid extraction for biofuel production. The amount of DME-extracted β-carotene was 7.0 mg/g, which was higher than that obtained from the chloroform-methanol extraction. Moreover, the total phenolic content extracted with DME and its antioxidant capacity were slightly higher than those extracted with chloroform-methanol. DME removed almost all the water and extracted 29.2 wt% of total lipids and 9.7 wt% of fatty acids. More lipids were extracted from wet samples by liquefied DME than by chloroform-methanol extraction. The C/N ratio of lipids extracted with DME was 112.0, higher than that of chloroform-methanol. The high C/N ratio suggests that nitrogen-containing phosphatidylcholines may be less easily extracted by liquefied DME and may be highly selective. However, the ratio of saturated fatty acids was 34.8%, lower than that of chloroform-methanol. Na<sup>+</sup> and Mg<sup>2+</sup> in the culture medium were not extracted using DME. Thus, using the extract with DME has both advantages and disadvantages compared to using the extract with chloroform-methanol; however, it has satisfactory extraction properties. DME is expected to be an environment-friendly alternative solvent because it does not require drying, which is necessary for conventional extraction solvents.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration. 鱼皮脱细胞外基质对加速皮肤再生的治疗作用
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100437
Seong-Yeong Heo, Tae-Hee Kim, Se-Chang Kim, Gun-Woo Oh, Soo-Jin Heo, Won-Kyo Jung
{"title":"Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration.","authors":"Seong-Yeong Heo, Tae-Hee Kim, Se-Chang Kim, Gun-Woo Oh, Soo-Jin Heo, Won-Kyo Jung","doi":"10.3390/md22100437","DOIUrl":"https://doi.org/10.3390/md22100437","url":null,"abstract":"<p><p>A cellular matrix derived from natural tissue functions as a highly biocompatible and versatile material for wound healing application. It provides a complex and highly organized environment with biological molecules and physical stimuli. Recently, various kinds of tissue/organ decellularized extracellular matrixes (dECMs) from bovine and porcine have been used as biomedical applications to support tissue regeneration but inherit religious restrictions and the risk of disease transmission to humans. Marine fish-derived dECMs are seen as attractive alternatives due to their similarity to mammalian physiology, reduced biological risks, and fewer religious restrictions. The aim of this study was to derive a decellularized matrix from the olive flounder (<i>Paralichthys olivaceus</i>) skin and evaluate its suitability as a wound healing application. Olive flounder skin was treated with a series of chemical treatments to remove cellular components. Decellularized fish skin (dFS) was confirmed to be successful in decellularization by evaluating the DNA content (2.84%). The dFS was characterized and evaluated in vivo to assess its biological activities. The mouse wound defect model was used to evaluate the in vivo performance of the dFS compared with that of the decellularized porcine skin (dPS). The resultant dFS was shown to enhance wound healing compared with the no-treatment group and dPS. This study suggests that dFS has potential for skin regeneration application.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and Activity of Bacteria Cultured from a Cup-The Sponge Calyx nicaeensis. 从杯状海绵 Calyx nicaeensis 中培养出的细菌的多样性和活性。
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100440
Lynne Itelson, Mayan Merav, Shai Haymi, Shmuel Carmeli, Micha Ilan
{"title":"Diversity and Activity of Bacteria Cultured from a Cup-The Sponge <i>Calyx nicaeensis</i>.","authors":"Lynne Itelson, Mayan Merav, Shai Haymi, Shmuel Carmeli, Micha Ilan","doi":"10.3390/md22100440","DOIUrl":"https://doi.org/10.3390/md22100440","url":null,"abstract":"<p><p>Marine sponges are well-known for hosting rich microbial communities. Sponges are the most prolific source of marine bioactive compounds, which are frequently synthesized by their associated microbiota. <i>Calyx nicaeensis</i> is an endemic Mediterranean sponge with scarce information regarding its (bioactive) secondary metabolites. East Mediterranean specimens of mesophotic <i>C. nicaeensis</i> have never been studied. Moreover, no research has inspected its associated bacteria. Thus, we studied the sponge's bacterial diversity and examined bacterial interspecific interactions in search of a promising antibacterial candidate. Such novel antimicrobial agents are needed since extensive antibiotic use leads to bacterial drug resistance. Bacteria cultivation yielded 90 operational taxonomic units (OTUs). A competition assay enabled the testing of interspecific interactions between the cultured OTUs. The highest-ranked antagonistic bacterium, identified as <i>Paenisporosarcina indica</i> (previously never found in marine or cold habitats), was mass cultured, extracted, and separated using size exclusion and reversed-phase chromatographic methods, guided by antibacterial activity. A pure compound was isolated and identified as 3-oxy-anteiso-C<sub>15</sub>-fatty acid-lichenysin. Five additional active compounds await final cleaning; however, they are lichenysins and surfactins. These are the first antibacterial compounds identified from either the <i>C. nicaeensis</i> sponge or <i>P. indica</i> bacterium. It also revealed that the genus <i>Bacillus</i> is not an exclusive producer of lichenysin and surfactin.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastic-Degrading Enzymes from Marine Microorganisms and Their Potential Value in Recycling Technologies. 海洋微生物的塑料降解酶及其在回收技术中的潜在价值。
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100441
Robert Ruginescu, Cristina Purcarea
{"title":"Plastic-Degrading Enzymes from Marine Microorganisms and Their Potential Value in Recycling Technologies.","authors":"Robert Ruginescu, Cristina Purcarea","doi":"10.3390/md22100441","DOIUrl":"https://doi.org/10.3390/md22100441","url":null,"abstract":"<p><p>Since the 2005 discovery of the first enzyme capable of depolymerizing polyethylene terephthalate (PET), an aromatic polyester once thought to be enzymatically inert, extensive research has been undertaken to identify and engineer new biocatalysts for plastic degradation. This effort was directed toward developing efficient enzymatic recycling technologies that could overcome the limitations of mechanical and chemical methods. These enzymes are versatile molecules obtained from microorganisms living in various environments, including soil, compost, surface seawater, and extreme habitats such as hot springs, hydrothermal vents, deep-sea regions, and Antarctic seawater. Among various plastics, PET and polylactic acid (PLA) have been the primary focus of enzymatic depolymerization research, greatly enhancing our knowledge of enzymes that degrade these specific polymers. They often display unique catalytic properties that reflect their particular ecological niches. This review explores recent advancements in marine-derived enzymes that can depolymerize synthetic plastic polymers, emphasizing their structural and functional features that influence the efficiency of these catalysts in biorecycling processes. Current status and future perspectives of enzymatic plastic depolymerization are also discussed, with a focus on the underexplored marine enzymatic resources.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Analytical Approach for Quality Control of Collagen in Food Supplements. 食品补充剂中胶原蛋白质量控制的综合分析方法。
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-26 DOI: 10.3390/md22100435
Nika Kržišnik, Ema Kurent, Robert Roškar
{"title":"A Comprehensive Analytical Approach for Quality Control of Collagen in Food Supplements.","authors":"Nika Kržišnik, Ema Kurent, Robert Roškar","doi":"10.3390/md22100435","DOIUrl":"https://doi.org/10.3390/md22100435","url":null,"abstract":"<p><p>Collagen is a popular nutricosmetic ingredient in food supplements due to its anti-aging and other positive effects on the skin. Due to its widespread use and the lack of regulation in this area, appropriate quality control is required to ensure efficacy and safety, with the development of analytical methods playing an important role. Currently, the quantitative determination of collagen is mainly based on time-consuming derivatization-based spectroscopic methods or on complex chromatographic methods with mass spectrometric detection. Therefore, in this study, two new, simple chromatographic methods have been developed. One is intended for the analysis of untreated samples and is characterized by the speed and simplicity of sample preparation. The other method quantifies collagen via the underivatized tripeptide Gly-Pro-Hyp formed by bacterial collagenase hydrolysis and is characterized by its specificity and ability to distinguish between marine and terrestrial collagen. The latter is a novelty in the field of simple methods for collagen analysis and is particularly important in terms of safety. Our comparison with established analytical methods (e.g., via hydroxyproline after complete hydrolysis) for collagen analysis undoubtedly showed the superiority of these new methods for the routine quality control of collagen supplements in terms of specificity, repeatability, sample stability, and simplification in sample preparation. The collagen content in the supplements tested was found to be adequate; however, some discrepancies were found regarding the labeling and origin of the collagen, with possible safety implications.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. 植物花青素负载藻酸盐水凝胶的合成与表征。
IF 4.9 2区 医学
Marine Drugs Pub Date : 2024-09-25 DOI: 10.3390/md22100434
Diana-Ioana Buliga, Alexandra Mocanu, Edina Rusen, Aurel Diacon, Gabriela Toader, Oana Brincoveanu, Ioan Călinescu, Aurelian Cristian Boscornea
{"title":"Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization.","authors":"Diana-Ioana Buliga, Alexandra Mocanu, Edina Rusen, Aurel Diacon, Gabriela Toader, Oana Brincoveanu, Ioan Călinescu, Aurelian Cristian Boscornea","doi":"10.3390/md22100434","DOIUrl":"https://doi.org/10.3390/md22100434","url":null,"abstract":"<p><p>Phycocyanin was extracted from <i>Spirulina platensis</i> using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 <i>w/v</i>). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the R<sub>P</sub> value, phycocyanin extract obtained by MAE (1:15 <i>w/v</i> algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R<sup>2</sup> value at higher pH was nearly 1, indicating a superior fit compared with lower pH values.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信