Marine Drugs最新文献

筛选
英文 中文
Regulation of Safracin Biosynthesis and Transport in Pseudomonas poae PMA22 调节假单胞菌 PMA22 中沙弗莱霉素的合成和转运
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-13 DOI: 10.3390/md22090418
J. Gerardo Hernández Delgado, Miguel G. Acedos, Fernando de la Calle, Pilar Rodríguez, José Luis García, Beatriz Galán
{"title":"Regulation of Safracin Biosynthesis and Transport in Pseudomonas poae PMA22","authors":"J. Gerardo Hernández Delgado, Miguel G. Acedos, Fernando de la Calle, Pilar Rodríguez, José Luis García, Beatriz Galán","doi":"10.3390/md22090418","DOIUrl":"https://doi.org/10.3390/md22090418","url":null,"abstract":"Pseudomonas poae PMA22 produces safracins, a family of compounds with potent broad-spectrum anti-bacterial and anti-tumor activities. The safracins’ biosynthetic gene cluster (BGC sac) consists of 11 ORFs organized in two divergent operons (sacABCDEFGHK and sacIJ) that are controlled by Pa and Pi promoters. Contiguous to the BGC sac, we have located a gene that encodes a putative global regulator of the LysR family annotated as MexT that was originally described as a transcriptional activator of the MexEF-OprN multidrug efflux pump in Pseudomonas. Through both in vitro and in vivo experiments, we have demonstrated the involvement of the dual regulatory system MexT-MexS on the BGC sac expression acting as an activator and a repressor, respectively. The MexEF-OprN transport system of PMA22, also controlled by MexT, was shown to play a fundamental role in the metabolism of safracin. The overexpression of mexEF-oprN in PMA22 resulted in fourfold higher production levels of safracin. These results illustrate how a pleiotropic regulatory system can be critical to optimizing the production of tailored secondary metabolites, not only through direct interaction with the BGC promoters, but also by controlling their transport.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Antioxidant Potential: Factorial Design-Based Formulation of Fucoidan and Gallic Acid-Conjugated Dextran Blends 优化抗氧化潜力:基于因子设计的褐藻糖胶和没食子酸共轭葡聚糖混合物配方
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-13 DOI: 10.3390/md22090417
Cynthia Haynara Ferreira Silva, Maylla Maria Correia Leite Silva, Weslley Souza Paiva, Mayara Jane Campos de Medeiros, Moacir Fernandes Queiroz, Luciana Duarte Martins Matta, Everaldo Silvino dos Santos, Hugo Alexandre Oliveira Rocha
{"title":"Optimizing Antioxidant Potential: Factorial Design-Based Formulation of Fucoidan and Gallic Acid-Conjugated Dextran Blends","authors":"Cynthia Haynara Ferreira Silva, Maylla Maria Correia Leite Silva, Weslley Souza Paiva, Mayara Jane Campos de Medeiros, Moacir Fernandes Queiroz, Luciana Duarte Martins Matta, Everaldo Silvino dos Santos, Hugo Alexandre Oliveira Rocha","doi":"10.3390/md22090417","DOIUrl":"https://doi.org/10.3390/md22090417","url":null,"abstract":"The role of oxidative stress in health and homeostasis has generated interest in the scientific community due to its association with cardiovascular and neurodegenerative diseases, cancer, and other diseases. Therefore, extensive research seeks to identify new exogenous antioxidant compounds for supplementation. Polysaccharides are recognized for their antioxidant properties. However, polysaccharide chemical modifications are often necessary to enhance these properties. Therefore, dextran was conjugated with gallic acid (Dex-Gal) and later combined with fucoidan A (FucA) to formulate blends aimed at achieving superior antioxidant activity compared to individual polysaccharides. A factorial design was employed to combine FucA and Dex-Gal in different proportions, resulting in five blends (BLD1, BLD2, BLD3, BLD4, and BLD5). An analysis of surface graphs from in vitro antioxidant tests, including total antioxidant capacity (TAC), reducing power, and hydroxyl radical scavenging, guided the selection of BLD4 as the optimal formulation. Tests on 3T3 fibroblasts under various conditions of oxidative stress induced by hydrogen peroxide revealed that BLD4 provided enhanced protection compared to its isolated components. The BLD4 formulation, resulting from the combination of Dex-Gal and FucA, showed promise as an antioxidant strategy, outperforming its individual components and suggesting its potential as a supplement to mitigate oxidative stress in adverse health conditions.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome Analysis of a Potential Novel Vibrio Species Secreting pH-and Thermo-Stable Alginate Lyase and Its Application in Producing Alginate Oligosaccharides 分泌 pH 值和热稳定性藻酸盐裂解酶的潜在新型弧菌物种的基因组分析及其在生产藻酸盐低聚糖中的应用
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-10 DOI: 10.3390/md22090414
Ke Bao, Miao Yang, Qianhuan Sun, Kaishan Zhang, Huiqin Huang
{"title":"Genome Analysis of a Potential Novel Vibrio Species Secreting pH-and Thermo-Stable Alginate Lyase and Its Application in Producing Alginate Oligosaccharides","authors":"Ke Bao, Miao Yang, Qianhuan Sun, Kaishan Zhang, Huiqin Huang","doi":"10.3390/md22090414","DOIUrl":"https://doi.org/10.3390/md22090414","url":null,"abstract":"Alginate lyase is an attractive biocatalyst that can specifically degrade alginate to produce oligosaccharides, showing great potential for industrial and medicinal applications. Herein, an alginate-degrading strain HB236076 was isolated from Sargassum sp. in Qionghai, Hainan, China. The low 16S rRNA gene sequence identity (<98.4%), ANI value (<71.9%), and dDDH value (<23.9%) clearly indicated that the isolate represented a potential novel species of the genus Vibrio. The genome contained two chromosomes with lengths of 3,007,948 bp and 874,895 bp, respectively, totaling 3,882,843 bp with a G+C content of 46.5%. Among 3482 genes, 3332 protein-coding genes, 116 tRNA, and 34 rRNA sequences were predicted. Analysis of the amino acid sequences showed that the strain encoded 73 carbohydrate-active enzymes (CAZymes), predicting seven PL7 (Alg1–7) and two PL17 family (Alg8, 9) alginate lyases. The extracellular alginate lyase from strain HB236076 showed the maximum activity at 50 °C and pH 7.0, with over 90% activity measured in the range of 30–60 °C and pH 6.0–10.0, exhibiting a wide range of temperature and pH activities. The enzyme also remained at more than 90% of the original activity at a wide pH range (3.0–9.0) and temperature below 50 °C for more than 2 h, demonstrating significant thermal and pH stabilities. Fe2+ had a good promoting effect on the alginate lyase activity at 10 mM, increasing by 3.5 times. Thin layer chromatography (TLC) and electrospray ionization mass spectrometry (ESI-MS) analyses suggested that alginate lyase in fermentation broth could catalyze sodium alginate to produce disaccharides and trisaccharides, which showed antimicrobial activity against Shigella dysenteriae, Aeromonas hydrophila, Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. This research provided extended insights into the production mechanism of alginate lyase from Vibrio sp. HB236076, which was beneficial for further application in the preparation of pH-stable and thermo-stable alginate lyase and alginate oligosaccharides.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways 阿尔泰克龙 A 通过抑制 NF-κB 和 NLRP3 通路改善炎症性肠病
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-09 DOI: 10.3390/md22090410
Lei Li, Jing Huang, Lixin Feng, Liyan Xu, Houwen Lin, Kechun Liu, Xiaobin Li, Rongchun Wang
{"title":"Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways","authors":"Lei Li, Jing Huang, Lixin Feng, Liyan Xu, Houwen Lin, Kechun Liu, Xiaobin Li, Rongchun Wang","doi":"10.3390/md22090410","DOIUrl":"https://doi.org/10.3390/md22090410","url":null,"abstract":"Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1β, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Diversity and Specificity of Secondary Biosynthetic Potential in Rhodococcus 探索 Rhodococcus 次生生物合成潜能的多样性和特异性
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-06 DOI: 10.3390/md22090409
Gang-Ao Hu, Yue Song, Shi-Yi Liu, Wen-Chao Yu, Yan-Lei Yu, Jian-Wei Chen, Hong Wang, Bin Wei
{"title":"Exploring the Diversity and Specificity of Secondary Biosynthetic Potential in Rhodococcus","authors":"Gang-Ao Hu, Yue Song, Shi-Yi Liu, Wen-Chao Yu, Yan-Lei Yu, Jian-Wei Chen, Hong Wang, Bin Wei","doi":"10.3390/md22090409","DOIUrl":"https://doi.org/10.3390/md22090409","url":null,"abstract":"The actinomycete genus Rhodococcus is known for its diverse biosynthetic enzymes, with potential in pollutant degradation, chemical biocatalysis, and natural product exploration. Comparative genomics have analyzed the distribution patterns of non-ribosomal peptide synthetases (NRPSs) in Rhodococcus. The diversity and specificity of its secondary metabolism offer valuable insights for exploring natural products, yet remain understudied. In the present study, we analyzed the distribution patterns of biosynthetic gene clusters (BGCs) in the most comprehensive Rhodococcus genome data to date. The results show that 86.5% of the gene cluster families (GCFs) are only distributed in a specific phylogenomic-clade of Rhodococcus, with the most predominant types of gene clusters being NRPS and ribosomally synthesized and post-translationally modified peptides (RiPPs). In-depth mining of RiPP gene clusters revealed that Rhodococcus encodes many clade-specific novel RiPPs, with thirteen core peptides showing antibacterial potential. High-throughput elicitor screening (HiTES) and non-targeted metabolomics revealed that a marine-derived Rhodococcus strain produces a large number of new aurachin-like compounds when exposed to specific elicitors. The present study highlights the diversity and specificity of secondary biosynthetic potential in Rhodococcus, and provides valuable information for the targeted exploration of novel natural products from Rhodococcus, especially for phylogenomic-clade-specific metabolites.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF 红树林内生真菌 Xylaria arbuscula QYF 的细胞色素和多酮类化合物
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-05 DOI: 10.3390/md22090407
Qi Tan, Xinyu Ye, Siqi Fu, Yihao Yin, Yufeng Liu, Jianying Wu, Fei Cao, Bo Wang, Tingshun Zhu, Wencong Yang, Zhigang She
{"title":"The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF","authors":"Qi Tan, Xinyu Ye, Siqi Fu, Yihao Yin, Yufeng Liu, Jianying Wu, Fei Cao, Bo Wang, Tingshun Zhu, Wencong Yang, Zhigang She","doi":"10.3390/md22090407","DOIUrl":"https://doi.org/10.3390/md22090407","url":null,"abstract":"Twelve compounds, including four undescribed cytochalasins, xylariachalasins A–D (1–4), four undescribed polyketides (5–8), and four known cytochalasins (9–12), were isolated from the mangrove endophytic fungus Xylaria arbuscula QYF. Their structures and absolute configurations were established by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS), electronic circular dichroism (ECD) calculations, 13C NMR calculation and DP4+ analysis, single-crystal X-ray diffraction, and the modified Mosher ester method. Compounds 1 and 2 are rare cytochalasin hydroperoxides. In bioactivity assays, Compound 2 exhibited moderate antimicrobial activities against Staphylococcus aureus and Candida albicans with MIC values of 12.5 μM for both Compound 10 exhibited significant cytotoxic activity against MDA-MB-435 with an IC50 value of 3.61 ± 1.60 μM.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphaerococcenol A Derivatives: Design, Synthesis, and Cytotoxicity Sphaerococcenol A 衍生物:设计、合成和细胞毒性
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-05 DOI: 10.3390/md22090408
Dídia Sousa, Milene A. G. Fortunato, Joana Silva, Mónica Pingo, Alice Martins, Carlos A. M. Afonso, Rui Pedrosa, Filipa Siopa, Celso Alves
{"title":"Sphaerococcenol A Derivatives: Design, Synthesis, and Cytotoxicity","authors":"Dídia Sousa, Milene A. G. Fortunato, Joana Silva, Mónica Pingo, Alice Martins, Carlos A. M. Afonso, Rui Pedrosa, Filipa Siopa, Celso Alves","doi":"10.3390/md22090408","DOIUrl":"https://doi.org/10.3390/md22090408","url":null,"abstract":"Sphaerococcenol A is a cytotoxic bromoditerpene biosynthesized by the red alga Sphaerococcus coronopifolius. A series of its analogues (1–6) was designed and semi-synthesized using thiol-Michael additions and enone reduction, and the structures of these analogues were characterized by spectroscopic methods. Cytotoxic analyses (1–100 µM; 24 h) were accomplished on A549, DU-145, and MCF-7 cells. The six novel sphaerococcenol A analogues displayed an IC50 range between 14.31 and 70.11 µM on A549, DU-145, and MCF-7 malignant cells. Compound 1, resulting from the chemical addition of 4-methoxybenzenethiol, exhibited the smallest IC50 values on the A549 (18.70 µM) and DU-145 (15.82 µM) cell lines, and compound 3, resulting from the chemical addition of propanethiol, exhibited the smallest IC50 value (14.31 µM) on MCF-7 cells. The highest IC50 values were exhibited by compound 4, suggesting that the chemical addition of benzylthiol led to a loss of cytotoxic activity. The remaining chemical modifications were not able to potentiate the cytotoxicity of the original compounds. Regarding A549 cell viability, analogue 1 exhibited a marked effect on mitochondrial function, which was accompanied by an increase in ROS levels, Caspase-3 activation, and DNA fragmentation and condensation. This study opens new avenues for research by exploring sphaerococcenol A as a scaffold for the synthesis of novel bioactive molecules.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae 海洋微藻类在压力诱导下产生生物活性氧化脂
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-04 DOI: 10.3390/md22090406
Amandyne Linares-Maurizi, Rana Awad, Anaelle Durbec, Guillaume Reversat, Valérie Gros, Jean-Marie Galano, Justine Bertrand-Michel, Thierry Durand, Rémi Pradelles, Camille Oger, Claire Vigor
{"title":"Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae","authors":"Amandyne Linares-Maurizi, Rana Awad, Anaelle Durbec, Guillaume Reversat, Valérie Gros, Jean-Marie Galano, Justine Bertrand-Michel, Thierry Durand, Rémi Pradelles, Camille Oger, Claire Vigor","doi":"10.3390/md22090406","DOIUrl":"https://doi.org/10.3390/md22090406","url":null,"abstract":"Microalgae, stemming from a complex evolutionary lineage, possess a metabolic composition influenced by their evolutionary journey. They have the capacity to generate diverse polyunsaturated fatty acids (PUFAs), akin to those found in terrestrial plants and oily fish. Also, because of their numerous double bonds, these metabolic compounds are prone to oxidation processes, leading to the creation of valuable bioactive molecules called oxylipins. Moreover, owing to their adaptability across various environments, microalgae offer an intriguing avenue for biosynthesizing these compounds. Thus, modifying the culture conditions could potentially impact the profiles of oxylipins. Indeed, the accumulation of oxylipins in microalgae is subject to the influence of growth conditions, nutrient availability, and stressors, and adjusting these factors can enhance their production in microalgae culture. Consequently, the present study scrutinized the LC-MS/MS profiles of oxylipins from three marine microalgae species (two Haptagophytes and one Chlorophyte) cultivated in 1 L of photobioreactors under varying stress-inducing conditions, such as the introduction of H2O2, EtOAc, and NaCl, during their exponential growth phase. Approximately 50 oxylipins were identified, exhibiting different concentrations depending on the species and growth circumstances. This research suggests that microalgae metabolisms can be steered toward the production of bioactive oxylipins through modifications in the culture conditions. In this instance, the application of a low dose of hydrogen peroxide to Mi 124 appears to stimulate the production of nonenzymatic oxylipins. For Mi136, it is the application of salt stress that seems to increase the overall production of oxylipins. In the case of Mi 168, either a low concentration of H2O2 or a high concentration of AcOEt appears to have this effect.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light Spectra, a Promising Tool to Modulate Ulva lacinulata Productivity and Composition 光谱--调节 Ulva lacinulata 生产率和组成的有效工具
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-03 DOI: 10.3390/md22090404
Helena M. Amaro, Fernando Pagels, Rosa Melo, Antoine Fort, Ronan Sulpice, Graciliana Lopes, Isabel Costa, Isabel Sousa-Pinto
{"title":"Light Spectra, a Promising Tool to Modulate Ulva lacinulata Productivity and Composition","authors":"Helena M. Amaro, Fernando Pagels, Rosa Melo, Antoine Fort, Ronan Sulpice, Graciliana Lopes, Isabel Costa, Isabel Sousa-Pinto","doi":"10.3390/md22090404","DOIUrl":"https://doi.org/10.3390/md22090404","url":null,"abstract":"Light quality is a key factor affecting algal growth and biomass composition, particularly pigments such as carotenoids, known for their antioxidant properties. Light-emitting diodes (LEDs) are becoming a cost-effective solution for indoor seaweed production when compared to fluorescent bulbs, allowing full control of the light spectra. However, knowledge of its effects on Ulva biomass production is still scarce. In this study, we investigated the effects of LEDs on the phenotype of an Ulva lacinulata strain, collected on the Northern Portuguese coast. Effects of white (W), green (G), red (R), and blue (B) LEDs were evaluated for growth (fresh weight and area), photosynthetic activity, sporulation, and content of pigments and antioxidant compounds. The results showed that there were no significant differences in terms of fresh weight accumulation and reduced sporulation among the tested LEDs, while W light induced the highest expansion rate. Under G, U. lacinulata attained a quicker photoacclimation, and the highest content of pigments and total antioxidant activity; but with R and W, antioxidant compounds against the specific radicals O2•− and •NO were produced in a higher content when compared to other LEDs. Altogether, this study demonstrated that it is possible to modulate the bioactive properties of U. lacinulata by using W, R, and G light, opening the path to the production of biomass tailored for specific nutraceutical applications.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics 作为潜在抗炎治疗药物的海洋微生物分子
IF 5.4 2区 医学
Marine Drugs Pub Date : 2024-09-03 DOI: 10.3390/md22090405
Malia Lasalo, Thierry Jauffrais, Philippe Georgel, Mariko Matsui
{"title":"Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics","authors":"Malia Lasalo, Thierry Jauffrais, Philippe Georgel, Mariko Matsui","doi":"10.3390/md22090405","DOIUrl":"https://doi.org/10.3390/md22090405","url":null,"abstract":"The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-inflammatory compounds specially produced by or derived from marine microorganisms. After a detailed description of the MNPs exerting immunomodulatory potential and their biological target, we will briefly discuss the challenges associated with discovering anti-inflammatory compounds from marine microorganisms.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信