{"title":"Analysis of Thermo-Hydrodynamic Lubrication of Three-Lobe Semi-Floating Ring Bearing Considering Temperature–Viscosity Effect and Static Pressure Flow","authors":"Jiwei Dong, Huabing Wen, Junchao Zhu, Junhua Guo, Chen Zong","doi":"10.3390/lubricants12040140","DOIUrl":"https://doi.org/10.3390/lubricants12040140","url":null,"abstract":"High-power diesel engine turbochargers predominantly utilize floating ring bearings as their primary supporting components. To further enhance their load capacity, multi-lobe noncircular bearings have been progressively employed. This study focuses on the investigation of noncircular three-lobe SFRBs (semi-floating ring-bearing structures) in marine turbochargers. Employing the half-step center Finite Difference Method (FDM) and the Newton–Raphson iterative procedure, the impact of operational parameters such as the journal speed, external load, oil supply pressure, and oil supply temperature on the static and dynamic characteristics of the inner oil film is analyzed. Subsequently, the accuracy of the theoretical model is validated through a comparative analysis of simulation results obtained from Dyrobes and Fluent. The findings indicate that as the oil supply pressure and temperature increase, the temperature rise and maximum oil film pressure of the three-lobe SFRBs gradually decrease, while the oil film thickness progressively increases, thereby significantly improving the lubrication state. The load capacity of the three-lobe SFRBs is primarily sustained by the bottom tile, where wall friction is most likely to occur. Additionally, within the actual speed range, the stiffness and damping of the three-lobe SFRBs exhibit noticeable nonlinear characteristics.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-18DOI: 10.3390/lubricants12040139
B. Sahoo, J. Paul, Abhishek Sharma
{"title":"Mechanical and Tribological Behaviour of Surface-Graphitised Al-1100 Alloy","authors":"B. Sahoo, J. Paul, Abhishek Sharma","doi":"10.3390/lubricants12040139","DOIUrl":"https://doi.org/10.3390/lubricants12040139","url":null,"abstract":"This study details the mechanical incorporation of graphite particles into the surface of aluminium (Al-1100) to fabricate surface composites using an electrical resistance heating-assisted pressing method. Initially, the aluminium surface is coated with graphite via solution casting. Incorporation is accomplished by locally heating the graphite–aluminium interface with electrical resistance heating and subsequent mechanical pressure application. The magnitude of softening of the aluminium surface can be regulated by process considerations such as the applied current and heating duration. Microstructural assessment of the aluminium–graphite composite was conducted using SEM, TEM, Raman spectroscopy, and XRD. The surface mechanical properties and reduced Young’s modulus were improved by more than 200% and 150%, respectively. A detailed tribological study was conducted, and the study suggested that the wear resistance and COF improved by more than 50%. The progress in wear resistance and COF is corroborated by the microstructural changes in the matrix suggested by the Raman spectroscopy and XRD results.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140689352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-17DOI: 10.3390/lubricants12040136
Shutian Liu, Juncheng Lv, Chuanbo Liu
{"title":"The Effect of Lubricant’s Viscosity on Reducing the Frictional-Induced Fluctuation on the Onset of Friction","authors":"Shutian Liu, Juncheng Lv, Chuanbo Liu","doi":"10.3390/lubricants12040136","DOIUrl":"https://doi.org/10.3390/lubricants12040136","url":null,"abstract":"The initial friction stage between the contacting materials would generate a maximum shear force and an unstable fluctuating time, which had a negative effect on the entire frictional system, especially at low temperature conditions. In order to decrease the occurring shear force and fluctuating time on the onset of friction, two different lubricating oils were applied in this study to investigate the influence of lubricant’s viscosity on these friction behaviors. The frictional experiments were conducted between the steel ball and the 40CrMnMo, and special attention was paid to the relationship between maximum friction force, fluctuating time, frictional vibration and the initial lubricant temperature. The results showed that the friction force first increased to the maximum value and then experienced an oscillation damping period (fluctuating time) before it reached a stable state. And this fluctuating behavior caused corresponding vibrations on the initial contacting. However, compared to the high viscosity lubricating oil (HO), the low viscosity lubricating oil (LO) contributed to more than 50% reductions on max friction force, fluctuating time and vibration at the cold start (0 °C). Moreover, the weakened initial frictional fluctuation was conducive to generating a low and stable friction coefficient (COF) and wear loss of the long-term test. The discrepancy on lubricating performance was that the low viscosity provided high fluidity, which allowed rapid distribution of the lubricant between the contacting surfaces and formed an intact lubricating film. Similarly, the high temperature decreased the viscosity of HO and thus led to satisfactory friction reductions. The knowledge gained herein provides a supporting theory on the design and preparation of a lubricating oil with high performance.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-17DOI: 10.3390/lubricants12040134
F. Di Puccio, Andrea Di Pietro, Lorenza Mattei
{"title":"Pin-on-Plate vs. Pin-on-Disk Wear Tests: Theoretical and Numerical Observations on the Initial Transient Phase","authors":"F. Di Puccio, Andrea Di Pietro, Lorenza Mattei","doi":"10.3390/lubricants12040134","DOIUrl":"https://doi.org/10.3390/lubricants12040134","url":null,"abstract":"Pin-on-plate and pin-on-disk wear tests are typically used for assessing the wear behavior of a given material coupling and estimating its wear coefficient using the Archard wear law. This study investigates differences in the Archard law for pin-on-plate and pin-on-disk cases, particularly for flat-ended pins. Both analytical and finite element models of the two tests were developed, assuming a 21 N normal load and a 50π mm sliding distance. In pin-on-disk simulations three different distances between pin and disk axes were considered, i.e., 1.25–2.5–5 times the pin radius (5 mm). For the results, wear volumes, pressure and wear depth maps were compared. Some interesting aspects arose: (i) the rotational effect in pin-on-disk tests causes higher wear volumes (up to 13%) with respect to pin-on-plate tests: the nearer the pin to the disk axis, the higher the wear volume; (ii) a simple quadratic formula is defined to correct the wear volume estimation for pin-on-disk tests; (iii) pressure redistribution occurs with higher values closer to disk axis, opposite to the wear depth trend. Due to the high computational costs, only the running-in phase of wear tests was considered. Numerical strategies are currently under investigation to extend this study to the steady state phase.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-17DOI: 10.3390/lubricants12040135
Daoxin Su, Jianlin Sun, Erchao Meng, Yueting Xu, Mengxiao Zhang
{"title":"Effect of Sodium Alkane Sulfonate Addition on Tribological Properties of Emulsion for Cold Rolling Strips: Experimental and Simulation Investigations","authors":"Daoxin Su, Jianlin Sun, Erchao Meng, Yueting Xu, Mengxiao Zhang","doi":"10.3390/lubricants12040135","DOIUrl":"https://doi.org/10.3390/lubricants12040135","url":null,"abstract":"Cold rolling emulsion contains a variety of functional additives, which often exhibit complex interactions with each other. Sodium alkane sulfonate (SAS) is a common corrosion inhibitor used in cold rolling emulsions for temporary rust prevention. In this study, it was found that SAS would deteriorate the tribological properties of the emulsion. Emulsions containing SAS and different friction modifiers were prepared. Tribology tests were carried out on a four-ball friction and wear tester. White light interferometer was used to investigate the 3D morphology of the friction surface and wear volume. Microscopic morphology of friction surfaces was observed using a scanning electron microscope (SEM). The chemical activity and electrostatic potential of the molecules were calculated based on density functional theory (DFT). The adsorption energies of additives on metal surfaces were calculated via molecular dynamics (MD) simulation. The results indicate that the strong electrostatic force gives SAS an advantage in competitive adsorption with ester friction modifiers due to the positive charge on the metal surface. This results in the friction modifier not functioning properly and the tribological properties of the emulsion being significantly reduced.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-16DOI: 10.3390/lubricants12040132
Frederik Stelljes, Florian Pohlmann-Tasche, Friedrich Dinkelacker
{"title":"Experimental Investigation of a Free-Form Honed Cylinder Liner for Heavy-Duty Engines","authors":"Frederik Stelljes, Florian Pohlmann-Tasche, Friedrich Dinkelacker","doi":"10.3390/lubricants12040132","DOIUrl":"https://doi.org/10.3390/lubricants12040132","url":null,"abstract":"For future internal combustion engines, driven by regenerative fuels, efficiency is more important than ever. One approach to reduce the losses inside the piston cylinder unit (PCU) is to improve the alignment of the liner and the piston. Therefore, a cylinder liner with a free form was developed at the Institute of Technical Combustion (ITV) of the Leibniz University Hannover which compensates radial and linear deformations along the stroke. The layout is based on a FEM simulation. The liner was manufactured by the Institute of Production Engineering and Machine Tools (IFW) of Leibniz University of Hannover with a novel turn-milling process. The liner was investigated on the heavy-duty Floating-Liner engine of ITV with a displacement of 1991 ccm and a bore diameter of 130 mm. The experimental results show improvement in the friction losses over the whole engine map in the range of 9% and up to 17.3% compared to a serial liner. Sealing efficiency could be improved up to 28.8%, depending on the operational point. Overall, the investigation aims for lower fuel consumption which would in result fewer emissions.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140696795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-16DOI: 10.3390/lubricants12040133
Wenjun Gao, Can Li, Yuanhao Li, Zhenxia Liu, Yaguo Lyu
{"title":"Oil–Air Two-Phase Flow Distribution Characteristics inside Cylindrical Roller Bearing with Under-Race Lubrication","authors":"Wenjun Gao, Can Li, Yuanhao Li, Zhenxia Liu, Yaguo Lyu","doi":"10.3390/lubricants12040133","DOIUrl":"https://doi.org/10.3390/lubricants12040133","url":null,"abstract":"A deep understanding of oil behavior inside roller bearings is important for the precise design of bearing configurations and oil systems in aircraft engines. The numerical method is employed to track oil distribution inside cylindrical roller bearings with under-race lubrication along the circumference and radial direction, respectively. The results demonstrate that oil distribution along the circumference is periodic with the number of under-race nozzles, and higher rotating speed and lower flow rate would reduce the fluctuation amplitude. It is difficult for oil to flow through the gap between the cage pocket and rollers, and higher oil viscosity would worsen it further. In some extreme cases, the oil volume fraction near the outer race may be lower than 0.7%, causing the risk of lubricating and cooling failure. Thus, more attention should be paid to the outer race of the roller bearing with under-race lubrication, especially during the starting stage of the engine and in cold weather.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140697575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Friction Characteristics and Lubrication Properties of Spherical Hinge Structure of Swivel Bridge","authors":"Yingsong Li, Wei Guo, Xiaoming Huang, Zeqi Chen, Ying Gao","doi":"10.3390/lubricants12040130","DOIUrl":"https://doi.org/10.3390/lubricants12040130","url":null,"abstract":"A spherical hinge structure is a key swivel bridge element that must be considered when evaluating friction characteristics and lubrication properties to meet the rotation requirement. Polytetrafluoroethylene (PTFE)-based spherical hinge sliders and lubrication coating have been employed for over 20 years, but with the growing tonnage of swivel bridge construction, their capacity to accommodate the required lubrication properties can be exceeded. In this manuscript, the optimal friction coefficient of the spherical hinge is obtained through the finite element analysis method. Four lubrication coatings and four spherical hinge sliders are prepared and tested through a self-developed rotation friction coefficient test, four-ball machine test, dynamic shear rheological test, and compression and shear performance test to evaluate the lubrication and friction properties of the spherical hinge structure. The results of the finite element analysis show that the optimum rotation friction coefficient of the spherical hinge structure is 0.031–1.131. The test results illustrate that the friction coefficient, wear scar diameter, maximum non-seize load, phase transition point, and thixotropic ring area of graphene lubrication coating are 0.065, 0.79 mm, 426 N, 14.6%, and 64,878 Pa/s. The graphene lubrication coating has different degrees of improvement compared with conventional polytetrafluoroethylene lubrication coating, showing more excellent lubrication properties, bearing capacity, thixotropy, and structural strength. Compressive and shear tests demonstrate that polyether ether ketone (PEEK) has good compressive and shear mechanical properties. The maximum compressive stress of PEEK is 87.7% higher than conventional PTFE, and the shear strength of PEEK is 6.07 times higher than that of PTFE. The research results can provide significantly greater wear resistance and a lower friction coefficient of the spherical hinge structure, leading to lower traction energy consumption and ensuring smooth and precise bridge rotation.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Induced Orientation of Hydroxypropyl Methylcellulose Coating for Ultralow Wear","authors":"Haosheng Pang, Jianxun Xu, Huan Liu, Wenjuan Wang, Xuan Yin, Dameng Liu, Bing Zhang","doi":"10.3390/lubricants12040129","DOIUrl":"https://doi.org/10.3390/lubricants12040129","url":null,"abstract":"This study investigated the frictional properties of HPMC under different load and concentration conditions through friction experiments and surface characterization. The study aimed to explore and reveal the influence of load and concentration on the frictional properties of HPMC, as well as its anti−wear mechanism. The results of the study indicated that under the same solution concentration, the effect of load on the friction coefficient of HPMC was not significant. Specifically, for samples with low concentration (C−0.2), the wear ratio of HPMC under a 4 N load (1.01 × 10−11 mm3·N−1·m−1) was significantly lower than the wear ratio under a 2 N load (1.71 × 10−10 mm3·N−1·m−1). The orientation−driven formation of graphite−like carbon nanosheets, initiated by the decomposition of HPMC short chains, created a tribofilm−containing organic−chain mixed nanosheet on the sliding contact surface, which prevented direct contact between the upper and lower friction pairs. This achieved the anti−wear mechanism of two−body wear (tribo−film of an mDLC−coated ball and tribo−film of a GLC−coated Si wafer), ultimately leading to a state of ultra−low wear at the interface. The excellent anti−wear performance of HPMC suggests its potential as a candidate for the next generation of environmentally friendly bio−based solid lubricants.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LubricantsPub Date : 2024-04-15DOI: 10.3390/lubricants12040131
A. N. Wieczorek
{"title":"Ni-Cu Alloyed Austempered Ductile Iron Resistance to Multifactorial Wear","authors":"A. N. Wieczorek","doi":"10.3390/lubricants12040131","DOIUrl":"https://doi.org/10.3390/lubricants12040131","url":null,"abstract":"The paper provides a discussion on the results of studies of the effect exerted by combined degradation factors typical of four types of wear: abrasion, impact–abrasion, tribocorrosion, and impact–abrasion–corrosion, conducted for chain wheels made of Ni-Cu alloyed austempered ductile iron. The studies consisted of determining the content of retained austenite in the structure of the cast irons in question, establishing the measures of wear following wear testing, and identifying the basic surface degradation mechanisms observed in the chain wheels tested following multifactorial wear processes. The chain wheels made of ADI were found to have sustained the greatest damage under the impact–abrasion–corrosion (three-factor) wear scenario, while the wear was least advanced in the abrasion (one-factor) wear case. Another observation derived from the studies is that the combined effect of dynamic forces, corrosion, and quartz sand-based abrasives causes increased surface degradation in the cast iron grades taken into consideration compared to processes characterised by a reduced number of degradation factors (i.e., one- or two-factor wear processes). Additional hardness tests and XRD analyses revealed that a distinctive effect attributable to combined degradation factors on the surface hardness increased value and implied that bench testing was followed by phase transition.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140702793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}