Longjiang Shen, Yingmou Zhu, Shuai Shao, Huajin Zhou, Zhengyang Wang
{"title":"基于 MPS 方法的螺旋锥齿轮转向箱飞溅润滑特性研究","authors":"Longjiang Shen, Yingmou Zhu, Shuai Shao, Huajin Zhou, Zhengyang Wang","doi":"10.3390/lubricants11120520","DOIUrl":null,"url":null,"abstract":"In order to accurately and efficiently analyze the distribution law and motion status of lubricating oil in the spiral bevel gearbox of the electric multiple unit (EMU), a high-fidelity 3D CFD model of the spiral bevel gearbox of the EMU was established for the first time. The moving particle semi-implicit method was used to visualize the lubricating-oil flow field distribution characteristics of the gearbox. The distribution characteristics of lubricating oil in the gearbox with varying gear rotation speeds, initial lubricating-oil volume levels and oil temperatures were analyzed. It was found that the initial lubricating-oil volume is the factor with the largest influence, while the influences of gear rotation speed and oil temperature are relatively small. By analyzing the churning loss under various simulation conditions, it was found that the churning loss is positively correlated with the gear rotation speed and initial oil volume, and is more affected by the initial oil volume. The churning loss is negatively correlated with the oil temperature, and both are nonlinear relationships. The proportion of churning loss related to the driven gear is higher compared to that of the driving gear. These results can provide a theoretical basis for the subsequent optimization of the gearbox.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"66 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Splash Lubrication Characteristics of a Spiral Bevel Gearbox Based on the MPS Method\",\"authors\":\"Longjiang Shen, Yingmou Zhu, Shuai Shao, Huajin Zhou, Zhengyang Wang\",\"doi\":\"10.3390/lubricants11120520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to accurately and efficiently analyze the distribution law and motion status of lubricating oil in the spiral bevel gearbox of the electric multiple unit (EMU), a high-fidelity 3D CFD model of the spiral bevel gearbox of the EMU was established for the first time. The moving particle semi-implicit method was used to visualize the lubricating-oil flow field distribution characteristics of the gearbox. The distribution characteristics of lubricating oil in the gearbox with varying gear rotation speeds, initial lubricating-oil volume levels and oil temperatures were analyzed. It was found that the initial lubricating-oil volume is the factor with the largest influence, while the influences of gear rotation speed and oil temperature are relatively small. By analyzing the churning loss under various simulation conditions, it was found that the churning loss is positively correlated with the gear rotation speed and initial oil volume, and is more affected by the initial oil volume. The churning loss is negatively correlated with the oil temperature, and both are nonlinear relationships. The proportion of churning loss related to the driven gear is higher compared to that of the driving gear. These results can provide a theoretical basis for the subsequent optimization of the gearbox.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"66 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120520\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120520","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on Splash Lubrication Characteristics of a Spiral Bevel Gearbox Based on the MPS Method
In order to accurately and efficiently analyze the distribution law and motion status of lubricating oil in the spiral bevel gearbox of the electric multiple unit (EMU), a high-fidelity 3D CFD model of the spiral bevel gearbox of the EMU was established for the first time. The moving particle semi-implicit method was used to visualize the lubricating-oil flow field distribution characteristics of the gearbox. The distribution characteristics of lubricating oil in the gearbox with varying gear rotation speeds, initial lubricating-oil volume levels and oil temperatures were analyzed. It was found that the initial lubricating-oil volume is the factor with the largest influence, while the influences of gear rotation speed and oil temperature are relatively small. By analyzing the churning loss under various simulation conditions, it was found that the churning loss is positively correlated with the gear rotation speed and initial oil volume, and is more affected by the initial oil volume. The churning loss is negatively correlated with the oil temperature, and both are nonlinear relationships. The proportion of churning loss related to the driven gear is higher compared to that of the driving gear. These results can provide a theoretical basis for the subsequent optimization of the gearbox.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding