Can Zhu, Zhongyi He, Liping Xiong, Jiusheng Li, Yinglei Wu, Lili Li
{"title":"Study on the Influence of the MoS2 Addition Method on the Tribological and Corrosion Properties of Greases","authors":"Can Zhu, Zhongyi He, Liping Xiong, Jiusheng Li, Yinglei Wu, Lili Li","doi":"10.3390/lubricants11120517","DOIUrl":null,"url":null,"abstract":"MoS2 lithium-based grease is suitable for lubrication protection between bearings at high temperatures and loads due to its excellent tribological properties. However, there is little research on the influence of different addition methods of MoS2 additive on its tribology and corrosion properties. In this work, eco-friendly vegetable oil was selected as the base oil, with MoS2 powder as the additive to synthesize lithium-based grease. The effects of different adding modes of MoS2 on the tribology and corrosion properties of the grease were studied. The experimental results showed that adding 0.01 wt% MoS2 before thickening (Method D) was more conducive to improving the tribological properties of lithium grease. The average friction coefficient was reduced by 26.1%, and the average wear scar diameter was reduced by 0.16 mm. After grinding and adding (Method B) 0.01 wt% MoS2, the corrosion inhibition efficiency of the steel sheet was as high as 96.97%. The reason was that the tribochemical reaction of MoS2 evenly distributed throughout the grease during friction, forming a thin friction film, reducing friction and wear. The protective film formed by MoS2 and GCr15-bearing steel improved the corrosion inhibition performance of the grease.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"30 39","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120517","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MoS2 lithium-based grease is suitable for lubrication protection between bearings at high temperatures and loads due to its excellent tribological properties. However, there is little research on the influence of different addition methods of MoS2 additive on its tribology and corrosion properties. In this work, eco-friendly vegetable oil was selected as the base oil, with MoS2 powder as the additive to synthesize lithium-based grease. The effects of different adding modes of MoS2 on the tribology and corrosion properties of the grease were studied. The experimental results showed that adding 0.01 wt% MoS2 before thickening (Method D) was more conducive to improving the tribological properties of lithium grease. The average friction coefficient was reduced by 26.1%, and the average wear scar diameter was reduced by 0.16 mm. After grinding and adding (Method B) 0.01 wt% MoS2, the corrosion inhibition efficiency of the steel sheet was as high as 96.97%. The reason was that the tribochemical reaction of MoS2 evenly distributed throughout the grease during friction, forming a thin friction film, reducing friction and wear. The protective film formed by MoS2 and GCr15-bearing steel improved the corrosion inhibition performance of the grease.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding