Ti-6Al-4V 基材表面的镍基合金涂层的数值模拟与耐磨性能

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Yu Liu, Xiaofu Liu, Zhiqiang Xu, Miao Yu
{"title":"Ti-6Al-4V 基材表面的镍基合金涂层的数值模拟与耐磨性能","authors":"Yu Liu, Xiaofu Liu, Zhiqiang Xu, Miao Yu","doi":"10.3390/lubricants11120513","DOIUrl":null,"url":null,"abstract":"Laser cladding is a new technology to improve the wear resistance or corrosion resistance properties of metal parts. A finite element model of laser cladding coating was established by numerical simulation technology. The temperature field distribution was studied and analyzed during the laser cladding process at three different scanning speeds and three different laser powers. A Ni-based coating was also fabricated on the substrate by a CO2 laser. The optimum parameters of the laser cladding were selected and compared with the melt pool depth and width of the Ni-based coating. Then, the cooling rate, temperature gradient, temperature and stress fields were calculated and analyzed. The growth mechanism of the crystal structure was analyzed by scanning electron microscope (SEM). The wear resistance of the Ni-based coating was measured by a friction and wear testing machine. The results showed that the optimal parameters were laser power 1600 W and scanning speed 3 mm/s. The temperature trends at different locations were similar. The calculated maximum residual stress was 0.157 GPa. The stress concentration appeared near the surface and both sides of the cladding layer. From the coating’s microstructure, it could be seen that it contained a large number of columnar dendrites, and the crystal size gradually decreased with the increase of cooling rate. The wear rates of the Ti-6Al-4V (TC4) substrate and the Ni-based coating were 6.98 mm3/(N·m) and 3.45 mm3/(N·m), respectively. The Ni-based layer had a low wear rate and good wear resistance, which is helpful to obtain good friction and wear resistance of TC4 substrates.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"27 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation and Wear Resistance Property of Ni-Based Alloy Coating on the Surface of Ti-6Al-4V Substrate\",\"authors\":\"Yu Liu, Xiaofu Liu, Zhiqiang Xu, Miao Yu\",\"doi\":\"10.3390/lubricants11120513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser cladding is a new technology to improve the wear resistance or corrosion resistance properties of metal parts. A finite element model of laser cladding coating was established by numerical simulation technology. The temperature field distribution was studied and analyzed during the laser cladding process at three different scanning speeds and three different laser powers. A Ni-based coating was also fabricated on the substrate by a CO2 laser. The optimum parameters of the laser cladding were selected and compared with the melt pool depth and width of the Ni-based coating. Then, the cooling rate, temperature gradient, temperature and stress fields were calculated and analyzed. The growth mechanism of the crystal structure was analyzed by scanning electron microscope (SEM). The wear resistance of the Ni-based coating was measured by a friction and wear testing machine. The results showed that the optimal parameters were laser power 1600 W and scanning speed 3 mm/s. The temperature trends at different locations were similar. The calculated maximum residual stress was 0.157 GPa. The stress concentration appeared near the surface and both sides of the cladding layer. From the coating’s microstructure, it could be seen that it contained a large number of columnar dendrites, and the crystal size gradually decreased with the increase of cooling rate. The wear rates of the Ti-6Al-4V (TC4) substrate and the Ni-based coating were 6.98 mm3/(N·m) and 3.45 mm3/(N·m), respectively. The Ni-based layer had a low wear rate and good wear resistance, which is helpful to obtain good friction and wear resistance of TC4 substrates.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"27 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120513\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120513","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

激光熔覆是一种提高金属零件耐磨性或耐腐蚀性的新技术。采用数值模拟技术建立了激光熔覆层的有限元模型。研究和分析了三种不同扫描速度和激光功率下激光熔覆过程的温度场分布。利用CO2激光在基板上制备了镍基涂层。选择了激光熔覆的最佳工艺参数,并与熔池深度和熔池宽度进行了比较。然后对冷却速率、温度梯度、温度场和应力场进行了计算和分析。利用扫描电子显微镜(SEM)分析了晶体结构的生长机理。用摩擦磨损试验机测试了ni基涂层的耐磨性。结果表明,激光功率为1600 W,扫描速度为3 mm/s为最佳参数。不同地点的温度变化趋势相似。计算得到的最大残余应力为0.157 GPa。熔覆层的表面和两侧均出现应力集中。从涂层的显微组织可以看出,涂层中含有大量的柱状枝晶,并且随着冷却速度的增加,晶粒尺寸逐渐减小。Ti-6Al-4V (TC4)基体和ni基涂层的磨损率分别为6.98 mm3/(N·m)和3.45 mm3/(N·m)。ni基层具有较低的磨损率和良好的耐磨性,有助于TC4基板获得良好的摩擦磨损性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation and Wear Resistance Property of Ni-Based Alloy Coating on the Surface of Ti-6Al-4V Substrate
Laser cladding is a new technology to improve the wear resistance or corrosion resistance properties of metal parts. A finite element model of laser cladding coating was established by numerical simulation technology. The temperature field distribution was studied and analyzed during the laser cladding process at three different scanning speeds and three different laser powers. A Ni-based coating was also fabricated on the substrate by a CO2 laser. The optimum parameters of the laser cladding were selected and compared with the melt pool depth and width of the Ni-based coating. Then, the cooling rate, temperature gradient, temperature and stress fields were calculated and analyzed. The growth mechanism of the crystal structure was analyzed by scanning electron microscope (SEM). The wear resistance of the Ni-based coating was measured by a friction and wear testing machine. The results showed that the optimal parameters were laser power 1600 W and scanning speed 3 mm/s. The temperature trends at different locations were similar. The calculated maximum residual stress was 0.157 GPa. The stress concentration appeared near the surface and both sides of the cladding layer. From the coating’s microstructure, it could be seen that it contained a large number of columnar dendrites, and the crystal size gradually decreased with the increase of cooling rate. The wear rates of the Ti-6Al-4V (TC4) substrate and the Ni-based coating were 6.98 mm3/(N·m) and 3.45 mm3/(N·m), respectively. The Ni-based layer had a low wear rate and good wear resistance, which is helpful to obtain good friction and wear resistance of TC4 substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信