Tianyi Zeng, Yamac Dikmelik, Feng Xie, Kevin Lascola, David Burghoff, Qing Hu
{"title":"Ultrabroadband air-dielectric double-chirped mirrors for laser frequency combs.","authors":"Tianyi Zeng, Yamac Dikmelik, Feng Xie, Kevin Lascola, David Burghoff, Qing Hu","doi":"10.1038/s41377-025-01961-4","DOIUrl":"10.1038/s41377-025-01961-4","url":null,"abstract":"<p><p>Dispersion engineering is critical for the creation of integrated broadband laser frequency combs. In the long wavelength infrared range (LWIR, 8-13 µm), frequency combs based on quantum cascade lasers are attractive since they are monolithic, fundamental oscillators with high power levels and efficiencies. One effective approach for expanding quantum cascade laser gain bandwidth is by stacking multiple gain media with different center lasing frequencies, as this leads to flatter broadband gain spectra. However, as the gain bandwidth is increased, dispersion becomes the main limiting factor for comb bandwidth. Therefore, achieving broadband combs requires schemes that can flexibly engineer the dispersion over broad bandwidths. Here, we demonstrate the ultimate nanophotonic dispersion compensation scheme: an air-dielectric slab double-chirped mirror, which we fully integrate with the quantum cascade laser gain section. This scheme relies on the highest possible index contrast and therefore provides the maximum correction per unit length over a very broad bandwidth. With this approach, we report the successful demonstration of a broadband room-temperature LWIR laser frequency comb on a gain medium that normally does not form combs without deliberate dispersion compensations. Our air-dielectric mirrors are versatile and can be extended to other integrated laser frequency combs in different material platforms and frequency bands.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"280"},"PeriodicalIF":23.4,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144883131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jungkwuen An, Young Kim, Yunhee Kim, Hoon Song, Chunghwan Jung, Kanghee Won, Junsuk Rho, Hong-Seok Lee
{"title":"Achromatic beam deflector with electrodynamic phased arrays.","authors":"Jungkwuen An, Young Kim, Yunhee Kim, Hoon Song, Chunghwan Jung, Kanghee Won, Junsuk Rho, Hong-Seok Lee","doi":"10.1038/s41377-025-01936-5","DOIUrl":"10.1038/s41377-025-01936-5","url":null,"abstract":"<p><p>Since flat optics has the feature to implement a compact system, they are widely used in various applications to replace bulky refractive optics. However, they suffer from chromatic aberrations due to dispersion, limiting their effectiveness to a narrow wavelength range. Consequently, diffractive optics has been applied for dynamic beam steering within a specific wavelength region or for static steering across multiple wavelengths. This limitation has made it challenging to implement dynamic beam steering in full-color display applications. To address this issue, we developed a multi-wavelength-based optical architecture that mitigates chromatic aberrations. This system incorporates color-selective retarders, half-wave plates, polarization plates, and beam deflectors. We experimentally demonstrated an achromatic beam deflector using a dynamic phase array in transmission mode, achieving continuous tunable beam steering over multiple wavelengths at 460, 520, and 638 nm.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"276"},"PeriodicalIF":23.4,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144873892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haijun Tang, Can Huang, Yuhan Wang, Xiong Jiang, Ruiheng Jin, Yue Cui, Shumin Xiao, Qinghai Song
{"title":"Dynamically tunable long-range coupling enabled by bound state in the continuum.","authors":"Haijun Tang, Can Huang, Yuhan Wang, Xiong Jiang, Ruiheng Jin, Yue Cui, Shumin Xiao, Qinghai Song","doi":"10.1038/s41377-025-01975-y","DOIUrl":"10.1038/s41377-025-01975-y","url":null,"abstract":"<p><p>Formation and dynamic control of strong coupling among cavities are essential to realize advanced functional photonic and quantum circuits. Especially for cavities at distant distance or arbitrary locations. Conventional approaches suffer from short coupling distance, poor controllability, fixed locations and low wavelength uniformity, significantly restricting the scalability of photonic and quantum networks. Here, we exploit the intrinsic advantages of optical bound state in the continuum (BIC) and demonstrate an all-in-one solution for long-range coupled cavities. BIC metasurface can support a series of finite-sized quasi-BIC microlasers at arbitrary locations. The quasi-BICs microlasers have the same wavelength and are inherently connected through BIC metasurface. Consequently, the coupling distances in experiment increase significantly from subwavelength to tens of micrometers. Such long-range interaction in BIC metasurface enables scaling to two-dimensional architectures and ultrafast control of internal laser actions, e.g., non-Hermitian zero-mode lasing. This research shall facilitate the advancement of scalable and reconfigurable photonic networks.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"278"},"PeriodicalIF":23.4,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144873893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaegang Jo, Sujeong Byun, Munseong Bae, Jianwei Wang, Haejun Chung, Sejeong Kim
{"title":"Spin-orbit coupling in van der Waals materials for optical vortex generation.","authors":"Jaegang Jo, Sujeong Byun, Munseong Bae, Jianwei Wang, Haejun Chung, Sejeong Kim","doi":"10.1038/s41377-025-01926-7","DOIUrl":"10.1038/s41377-025-01926-7","url":null,"abstract":"<p><p>An optical vortex beam has attracted significant attention across diverse applications, including optical manipulation, phase-contrast microscopy, optical communication, and quantum photonics. To utilize vortex generators for integrated photonics, researchers have developed ultra-compact vortex generators using fork gratings, metasurfaces, and integrated microcombs. However, those devices depend on costly, time-consuming nanofabrication and are constrained by the low signal-to-noise ratio due to the fabrication error. As an alternative maneuver, spin-orbit coupling has emerged as a method to obtain the vortex beam by converting spin angular momentum (SAM) without nanostructures. Here, we demonstrate the creation of an optical vortex beam using van der Waals (vdW) materials. The significantly high birefringence of vdW materials allows the generation of optical vortex beams, even with materials of sub-wavelength thickness. In this work, we utilize an 8 µm-thick hexagonal boron nitride (hBN) crystal for the creation of optical vortices carrying topological charges of ±2. We also present the generation of an optical vortex beam in a 320 nm-thick MoS<sub>2</sub> crystal with a conversion efficiency of 0.09. This study paves the way for fabrication-less and ultra-compact optical vortex generators, which can be applied for integrated photonics and large-scale vortex generator arrays.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"277"},"PeriodicalIF":23.4,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144873894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Yao, Yubin Fan, Yunhui Gao, Rong Lin, Zhihui Wang, Mu Ku Chen, Shumin Xiao, Din Ping Tsai
{"title":"Nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging.","authors":"Jin Yao, Yubin Fan, Yunhui Gao, Rong Lin, Zhihui Wang, Mu Ku Chen, Shumin Xiao, Din Ping Tsai","doi":"10.1038/s41377-024-01728-3","DOIUrl":"10.1038/s41377-024-01728-3","url":null,"abstract":"<p><p>Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity. Here, we experimentally demonstrate the nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging. Quasi-bound states in the continuum (q-BICs) are excited to provide a high quality factor of 90 and incident-angle dependence. The generalized Kerker condition, driven by Fano-like interactions between q-BIC and in-plane Mie resonances, breaks the radiation symmetry, resulting in a transmission peak with a geometric phase for polarization-converted light, while unconverted light exhibits a transmission dip without a geometric phase. Enhanced polarization conversion efficiency of 65% is achieved, accompanied by a minimal unconverted value, surpassing the theoretical limit of traditional thin nonlocal metasurfaces. Leveraging these effects, the output polarization-converted state exhibits an efficient wavelength-selective focusing phase profile. The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion, passing high-frequency edge details. Bright-field imaging and edge detection are thus presented under two output spin states. This work provides a versatile framework for nonlocal metasurfaces, boosting biomedical imaging and sensing applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"65"},"PeriodicalIF":19.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress on aero-optical effects of hypersonic optical window with film cooling.","authors":"Shihe Yi, Haolin Ding, Suyiming Luo, Xiaobin Sun, Zihao Xia","doi":"10.1038/s41377-024-01596-x","DOIUrl":"10.1038/s41377-024-01596-x","url":null,"abstract":"<p><p>In recent years, the demand for optical imaging and detection in hypersonic aircraft has been on the rise. The high-temperature and high-pressure compressed flow field near airborne optoelectronic devices creates significant interference with light transmission, known as hypersonic aero-optical effects. This effect has emerged as a key technological challenge, limiting hypersonic optical imaging and detection capabilities. This article focuses on introducing the thermal effects and optical transmission effects of hypersonic aero-optical effects, as along with corresponding suppression techniques. In addition, this article critically reviews and succinctly summarizes the advancements made in hypersonic aero-optical effects testing technology, while also delineating avenues for future research needs in this field. In conclusion, there is an urgent call for further exploration into the study of aero-optical effects under conditions characterized by high Mach, high enthalpy, and high Reynolds number in the future.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"310"},"PeriodicalIF":19.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dae-Myeong Geum, Jinha Lim, Junho Jang, Seungyeop Ahn, SeongKwang Kim, Joonsup Shim, Bong Ho Kim, Juhyuk Park, Woo Jin Baek, Jaeyong Jeong, SangHyeon Kim
{"title":"Highly-efficient (>70%) and Wide-spectral (400-1700 nm) sub-micron-thick InGaAs photodiodes for future high-resolution image sensors.","authors":"Dae-Myeong Geum, Jinha Lim, Junho Jang, Seungyeop Ahn, SeongKwang Kim, Joonsup Shim, Bong Ho Kim, Juhyuk Park, Woo Jin Baek, Jaeyong Jeong, SangHyeon Kim","doi":"10.1038/s41377-024-01652-6","DOIUrl":"10.1038/s41377-024-01652-6","url":null,"abstract":"<p><p>This paper demonstrates the novel approach of sub-micron-thick InGaAs broadband photodetectors (PDs) designed for high-resolution imaging from the visible to short-wavelength infrared (SWIR) spectrum. Conventional approaches encounter challenges such as low resolution and crosstalk issues caused by a thick absorption layer (AL). Therefore, we propose a guided-mode resonance (GMR) structure to enhance the quantum efficiency (QE) of the InGaAs PDs in the SWIR region with only sub-micron-thick AL. The TiO<sub>x</sub>/Au-based GMR structure compensates for the reduced AL thickness, achieving a remarkably high QE (>70%) from 400 to 1700 nm with only a 0.98 μm AL InGaAs PD (defined as 1 μm AL PD). This represents a reduction in thickness by at least 2.5 times compared to previous results while maintaining a high QE. Furthermore, the rapid transit time is highly expected to result in decreased electrical crosstalk. The effectiveness of the GMR structure is evident in its ability to sustain QE even with a reduced AL thickness, simultaneously enhancing the transit time. This breakthrough offers a viable solution for high-resolution and low-noise broadband image sensors.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"311"},"PeriodicalIF":19.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorry Mazzella, Thomas Mangeat, Guillaume Giroussens, Benoit Rogez, Hao Li, Justine Creff, Mehdi Saadaoui, Carla Martins, Ronan Bouzignac, Simon Labouesse, Jérome Idier, Frédéric Galland, Marc Allain, Anne Sentenac, Loïc LeGoff
{"title":"Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging.","authors":"Lorry Mazzella, Thomas Mangeat, Guillaume Giroussens, Benoit Rogez, Hao Li, Justine Creff, Mehdi Saadaoui, Carla Martins, Ronan Bouzignac, Simon Labouesse, Jérome Idier, Frédéric Galland, Marc Allain, Anne Sentenac, Loïc LeGoff","doi":"10.1038/s41377-024-01612-0","DOIUrl":"10.1038/s41377-024-01612-0","url":null,"abstract":"<p><p>The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"285"},"PeriodicalIF":19.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sirazul Haque, Miguel Alexandre, António T Vicente, Kezheng Li, Christian S Schuster, Sui Yang, Hugo Águas, Rodrigo Martins, Rute A S Ferreira, Manuel J Mendes
{"title":"Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability.","authors":"Sirazul Haque, Miguel Alexandre, António T Vicente, Kezheng Li, Christian S Schuster, Sui Yang, Hugo Águas, Rodrigo Martins, Rute A S Ferreira, Manuel J Mendes","doi":"10.1038/s41377-024-01637-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01637-5","url":null,"abstract":"","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"259"},"PeriodicalIF":19.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.","authors":"Zhou Zhou, Yiheng Zhang, Yingxin Xie, Tian Huang, Zile Li, Peng Chen, Yan-Qing Lu, Shaohua Yu, Shuang Zhang, Guoxing Zheng","doi":"10.1038/s41377-024-01608-w","DOIUrl":"10.1038/s41377-024-01608-w","url":null,"abstract":"<p><p>Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed \"two-in-one\" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"242"},"PeriodicalIF":19.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}