Jin Yao, Yubin Fan, Yunhui Gao, Rong Lin, Zhihui Wang, Mu Ku Chen, Shumin Xiao, Din Ping Tsai
{"title":"用于高质量因子自旋复用成像的非局部惠更斯元透镜。","authors":"Jin Yao, Yubin Fan, Yunhui Gao, Rong Lin, Zhihui Wang, Mu Ku Chen, Shumin Xiao, Din Ping Tsai","doi":"10.1038/s41377-024-01728-3","DOIUrl":null,"url":null,"abstract":"<p><p>Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity. Here, we experimentally demonstrate the nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging. Quasi-bound states in the continuum (q-BICs) are excited to provide a high quality factor of 90 and incident-angle dependence. The generalized Kerker condition, driven by Fano-like interactions between q-BIC and in-plane Mie resonances, breaks the radiation symmetry, resulting in a transmission peak with a geometric phase for polarization-converted light, while unconverted light exhibits a transmission dip without a geometric phase. Enhanced polarization conversion efficiency of 65% is achieved, accompanied by a minimal unconverted value, surpassing the theoretical limit of traditional thin nonlocal metasurfaces. Leveraging these effects, the output polarization-converted state exhibits an efficient wavelength-selective focusing phase profile. The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion, passing high-frequency edge details. Bright-field imaging and edge detection are thus presented under two output spin states. This work provides a versatile framework for nonlocal metasurfaces, boosting biomedical imaging and sensing applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"65"},"PeriodicalIF":19.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782524/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging.\",\"authors\":\"Jin Yao, Yubin Fan, Yunhui Gao, Rong Lin, Zhihui Wang, Mu Ku Chen, Shumin Xiao, Din Ping Tsai\",\"doi\":\"10.1038/s41377-024-01728-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity. Here, we experimentally demonstrate the nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging. Quasi-bound states in the continuum (q-BICs) are excited to provide a high quality factor of 90 and incident-angle dependence. The generalized Kerker condition, driven by Fano-like interactions between q-BIC and in-plane Mie resonances, breaks the radiation symmetry, resulting in a transmission peak with a geometric phase for polarization-converted light, while unconverted light exhibits a transmission dip without a geometric phase. Enhanced polarization conversion efficiency of 65% is achieved, accompanied by a minimal unconverted value, surpassing the theoretical limit of traditional thin nonlocal metasurfaces. Leveraging these effects, the output polarization-converted state exhibits an efficient wavelength-selective focusing phase profile. The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion, passing high-frequency edge details. Bright-field imaging and edge detection are thus presented under two output spin states. This work provides a versatile framework for nonlocal metasurfaces, boosting biomedical imaging and sensing applications.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"14 1\",\"pages\":\"65\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01728-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01728-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging.
Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity. Here, we experimentally demonstrate the nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging. Quasi-bound states in the continuum (q-BICs) are excited to provide a high quality factor of 90 and incident-angle dependence. The generalized Kerker condition, driven by Fano-like interactions between q-BIC and in-plane Mie resonances, breaks the radiation symmetry, resulting in a transmission peak with a geometric phase for polarization-converted light, while unconverted light exhibits a transmission dip without a geometric phase. Enhanced polarization conversion efficiency of 65% is achieved, accompanied by a minimal unconverted value, surpassing the theoretical limit of traditional thin nonlocal metasurfaces. Leveraging these effects, the output polarization-converted state exhibits an efficient wavelength-selective focusing phase profile. The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion, passing high-frequency edge details. Bright-field imaging and edge detection are thus presented under two output spin states. This work provides a versatile framework for nonlocal metasurfaces, boosting biomedical imaging and sensing applications.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.