Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy
Lorry Mazzella, Thomas Mangeat, Guillaume Giroussens, Benoit Rogez, Hao Li, Justine Creff, Mehdi Saadaoui, Carla Martins, Ronan Bouzignac, Simon Labouesse, Jérome Idier, Frédéric Galland, Marc Allain, Anne Sentenac, Loïc LeGoff
{"title":"Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging.","authors":"Lorry Mazzella, Thomas Mangeat, Guillaume Giroussens, Benoit Rogez, Hao Li, Justine Creff, Mehdi Saadaoui, Carla Martins, Ronan Bouzignac, Simon Labouesse, Jérome Idier, Frédéric Galland, Marc Allain, Anne Sentenac, Loïc LeGoff","doi":"10.1038/s41377-024-01612-0","DOIUrl":null,"url":null,"abstract":"<p><p>The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"285"},"PeriodicalIF":19.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01612-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.

Abstract Image

扩展景深随机照明显微镜(EDF-RIM)可提供超分辨投影成像。
荧光显微技术的最终目标是对越来越大的生物样本进行高分辨率成像。当沿光轴的信息压缩不影响图像解读时,扩展景深是加速大型样本成像的潜在解决方案。我们在随机照明显微镜(RIM)中采用了扩展景深(EDF)方法。RIM 采用多重斑点照明和方差数据处理技术,将分辨率提高了一倍。这种方法无需了解照明模式,因此特别适用于厚样品的成像。我们展示了生物组织和细胞的高分辨率投射图像。与传统 2D-RIM 对成像体积的顺序扫描相比,EDF-RIM 在速度和减少光剂量方面都有数量级的提高,而且分辨率相当。由于 EDF 模式会丢失轴向信息,因此我们提出了一种方法来检索细胞片状组织样本的地形图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信