Spin-orbit coupling in van der Waals materials for optical vortex generation.

IF 23.4 1区 物理与天体物理 Q1 Physics and Astronomy
Jaegang Jo, Sujeong Byun, Munseong Bae, Jianwei Wang, Haejun Chung, Sejeong Kim
{"title":"Spin-orbit coupling in van der Waals materials for optical vortex generation.","authors":"Jaegang Jo, Sujeong Byun, Munseong Bae, Jianwei Wang, Haejun Chung, Sejeong Kim","doi":"10.1038/s41377-025-01926-7","DOIUrl":null,"url":null,"abstract":"<p><p>An optical vortex beam has attracted significant attention across diverse applications, including optical manipulation, phase-contrast microscopy, optical communication, and quantum photonics. To utilize vortex generators for integrated photonics, researchers have developed ultra-compact vortex generators using fork gratings, metasurfaces, and integrated microcombs. However, those devices depend on costly, time-consuming nanofabrication and are constrained by the low signal-to-noise ratio due to the fabrication error. As an alternative maneuver, spin-orbit coupling has emerged as a method to obtain the vortex beam by converting spin angular momentum (SAM) without nanostructures. Here, we demonstrate the creation of an optical vortex beam using van der Waals (vdW) materials. The significantly high birefringence of vdW materials allows the generation of optical vortex beams, even with materials of sub-wavelength thickness. In this work, we utilize an 8 µm-thick hexagonal boron nitride (hBN) crystal for the creation of optical vortices carrying topological charges of ±2. We also present the generation of an optical vortex beam in a 320 nm-thick MoS<sub>2</sub> crystal with a conversion efficiency of 0.09. This study paves the way for fabrication-less and ultra-compact optical vortex generators, which can be applied for integrated photonics and large-scale vortex generator arrays.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"277"},"PeriodicalIF":23.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-025-01926-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

An optical vortex beam has attracted significant attention across diverse applications, including optical manipulation, phase-contrast microscopy, optical communication, and quantum photonics. To utilize vortex generators for integrated photonics, researchers have developed ultra-compact vortex generators using fork gratings, metasurfaces, and integrated microcombs. However, those devices depend on costly, time-consuming nanofabrication and are constrained by the low signal-to-noise ratio due to the fabrication error. As an alternative maneuver, spin-orbit coupling has emerged as a method to obtain the vortex beam by converting spin angular momentum (SAM) without nanostructures. Here, we demonstrate the creation of an optical vortex beam using van der Waals (vdW) materials. The significantly high birefringence of vdW materials allows the generation of optical vortex beams, even with materials of sub-wavelength thickness. In this work, we utilize an 8 µm-thick hexagonal boron nitride (hBN) crystal for the creation of optical vortices carrying topological charges of ±2. We also present the generation of an optical vortex beam in a 320 nm-thick MoS2 crystal with a conversion efficiency of 0.09. This study paves the way for fabrication-less and ultra-compact optical vortex generators, which can be applied for integrated photonics and large-scale vortex generator arrays.

Abstract Image

范德华材料中的自旋轨道耦合用于光学涡旋的产生。
光学涡旋光束在光学操作、相衬显微镜、光通信和量子光子学等多种应用中引起了广泛的关注。为了将涡旋发生器应用于集成光子学,研究人员开发了使用叉形光栅、超表面和集成微梳的超紧凑涡旋发生器。然而,这些设备依赖于昂贵、耗时的纳米制造,并且由于制造误差而受到低信噪比的限制。作为一种替代机动,自旋-轨道耦合作为一种通过转换自旋角动量(SAM)来获得涡旋光束的方法已经出现。在这里,我们演示了使用范德华(vdW)材料创建光学涡旋光束。vdW材料显著的高双折射特性使得即使是亚波长厚度的材料也能产生光学涡旋光束。在这项工作中,我们利用8微米厚的六方氮化硼(hBN)晶体来产生携带拓扑电荷为±2的光学涡流。我们还介绍了在320nm厚的二硫化钼晶体中产生光涡旋光束,其转换效率为0.09。该研究为光学涡旋发生器的无制造和超紧凑化铺平了道路,可应用于集成光子学和大型涡旋发生器阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信