{"title":"用于同时进行光谱测量和成像的电可调平面液晶单晶。","authors":"Zhou Zhou, Yiheng Zhang, Yingxin Xie, Tian Huang, Zile Li, Peng Chen, Yan-Qing Lu, Shaohua Yu, Shuang Zhang, Guoxing Zheng","doi":"10.1038/s41377-024-01608-w","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed \"two-in-one\" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"242"},"PeriodicalIF":19.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381520/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.\",\"authors\":\"Zhou Zhou, Yiheng Zhang, Yingxin Xie, Tian Huang, Zile Li, Peng Chen, Yan-Qing Lu, Shaohua Yu, Shuang Zhang, Guoxing Zheng\",\"doi\":\"10.1038/s41377-024-01608-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed \\\"two-in-one\\\" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"13 1\",\"pages\":\"242\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01608-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01608-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.
Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed "two-in-one" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.