Jaewon Yang, Asim Afaq, Robert Sibley, Alan McMilan, Ali Pirasteh
{"title":"Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs.","authors":"Jaewon Yang, Asim Afaq, Robert Sibley, Alan McMilan, Ali Pirasteh","doi":"10.1007/s10334-024-01199-y","DOIUrl":"10.1007/s10334-024-01199-y","url":null,"abstract":"<p><p>We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and simulated data generation. (1) DL-based attenuation correction (DLAC) remains an area of limited exploration for pediatric whole-body PET/MR and lung-specific DLAC due to data shortages and technical limitations. (2) DL-based image enhancement approximating MR-guided regularized reconstruction with a high-resolution MR prior has shown promise in enhancing PET image quality. However, its clinical value has not been thoroughly evaluated across various radiotracers, and applications outside the head may pose challenges due to motion artifacts. (3) Robust training for DL-based motion correction requires pairs of motion-corrupted and motion-corrected PET/MR data. However, these pairs are rare. (4) DL-based approaches can address the limitations of dynamic PET, such as long scan durations that may cause patient discomfort and motion, providing new research opportunities. (5) Monte-Carlo simulations using anthropomorphic digital phantoms can provide extensive datasets to address the shortage of clinical data. This summary of technical/clinical challenges and potential solutions may provide research opportunities for the research community towards the clinical translation of DL solutions.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"749-763"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Guadalupe Mora Álvarez, Ananth J Madhuranthakam, Durga Udayakumar
{"title":"Quantitative non-contrast perfusion MRI in the body using arterial spin labeling.","authors":"María Guadalupe Mora Álvarez, Ananth J Madhuranthakam, Durga Udayakumar","doi":"10.1007/s10334-024-01188-1","DOIUrl":"10.1007/s10334-024-01188-1","url":null,"abstract":"<p><p>Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method that enables the assessment and the quantification of perfusion without the need for an exogenous contrast agent. ASL was originally developed in the early 1990s to measure cerebral blood flow. The utility of ASL has since then broadened to encompass various organ systems, offering insights into physiological and pathological states. In this review article, we present a synopsis of ASL for quantitative non-contrast perfusion MRI, as a contribution to the special issue titled \"Quantitative MRI-how to make it work in the body?\" The article begins with an introduction to ASL principles, followed by different labeling strategies, such as pulsed, continuous, pseudo-continuous, and velocity-selective approaches, and their role in perfusion quantification. We proceed to address the technical challenges associated with ASL in the body and outline some of the innovative approaches devised to surmount these issues. Subsequently, we summarize potential clinical applications, challenges, and state-of-the-art ASL methods to quantify perfusion in some of the highly perfused organs in the thorax (lungs), abdomen (kidneys, liver, pancreas), and pelvis (placenta) of the human body. The article concludes by discussing future directions for successful translation of quantitative ASL in body imaging.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"681-695"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jana Huiyue Zhang, Tom Neumann, Tobias Schaeffter, Christoph Kolbitsch, Kirsten Miriam Kerkering
{"title":"Respiratory motion-corrected T1 mapping of the abdomen.","authors":"Jana Huiyue Zhang, Tom Neumann, Tobias Schaeffter, Christoph Kolbitsch, Kirsten Miriam Kerkering","doi":"10.1007/s10334-024-01196-1","DOIUrl":"10.1007/s10334-024-01196-1","url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency.</p><p><strong>Materials and methods: </strong>Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times.</p><p><strong>Results: </strong>For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s.</p><p><strong>Discussion: </strong>The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"637-649"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaohuan Zhang, Elif Aygun, Shu-Fu Shih, Steven S Raman, Kyunghyun Sung, Holden H Wu
{"title":"High-resolution prostate diffusion MRI using eddy current-nulled convex optimized diffusion encoding and random matrix theory-based denoising.","authors":"Zhaohuan Zhang, Elif Aygun, Shu-Fu Shih, Steven S Raman, Kyunghyun Sung, Holden H Wu","doi":"10.1007/s10334-024-01147-w","DOIUrl":"10.1007/s10334-024-01147-w","url":null,"abstract":"<p><strong>Objective: </strong>To develop and evaluate a technique combining eddy current-nulled convex optimized diffusion encoding (ENCODE) with random matrix theory (RMT)-based denoising to accelerate and improve the apparent signal-to-noise ratio (aSNR) and apparent diffusion coefficient (ADC) mapping in high-resolution prostate diffusion-weighted MRI (DWI). MATERIALS AND METHODS: Eleven subjects with clinical suspicion of prostate cancer were scanned at 3T with high-resolution (HR) (in-plane: 1.0 × 1.0 mm<sup>2</sup>) ENCODE and standard-resolution (1.6 × 2.2 mm<sup>2</sup>) bipolar DWI sequences (both had 7 repetitions for averaging, acquisition time [TA] of 5 min 50 s). HR-ENCODE was retrospectively analyzed using three repetitions (accelerated effective TA of 2 min 30 s). The RMT-based denoising pipeline utilized complex DWI signals and Marchenko-Pastur distribution-based principal component analysis to remove additive Gaussian noise in images from multiple coils, b-values, diffusion encoding directions, and repetitions. HR-ENCODE with RMT-based denoising (HR-ENCODE-RMT) was compared with HR-ENCODE in terms of aSNR in prostate peripheral zone (PZ) and transition zone (TZ). Precision and accuracy of ADC were evaluated by the coefficient of variation (CoV) between repeated measurements and mean difference (MD) compared to the bipolar ADC reference, respectively. Differences were compared using two-sided Wilcoxon signed-rank tests (P < 0.05 considered significant).</p><p><strong>Results: </strong>HR-ENCODE-RMT yielded 62% and 56% higher median aSNR than HR-ENCODE (b = 800 s/mm<sup>2</sup>) in PZ and TZ, respectively (P < 0.001). HR-ENCODE-RMT achieved 63% and 70% lower ADC-CoV than HR-ENCODE in PZ and TZ, respectively (P < 0.001). HR-ENCODE-RMT ADC and bipolar ADC had low MD of 22.7 × 10<sup>-6</sup> mm<sup>2</sup>/s in PZ and low MD of 90.5 × 10<sup>-6</sup> mm<sup>2</sup>/s in TZ.</p><p><strong>Conclusions: </strong>HR-ENCODE-RMT can shorten the acquisition time and improve the aSNR of high-resolution prostate DWI and achieve accurate and precise ADC measurements in the prostate.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"603-619"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sean McTavish, Anh T Van, Johannes M Peeters, Kilian Weiss, Felix N Harder, Marcus R Makowski, Rickmer F Braren, Dimitrios C Karampinos
{"title":"Partial Fourier in the presence of respiratory motion in prostate diffusion-weighted echo planar imaging.","authors":"Sean McTavish, Anh T Van, Johannes M Peeters, Kilian Weiss, Felix N Harder, Marcus R Makowski, Rickmer F Braren, Dimitrios C Karampinos","doi":"10.1007/s10334-024-01162-x","DOIUrl":"10.1007/s10334-024-01162-x","url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions.</p><p><strong>Methods: </strong>A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC.</p><p><strong>Results: </strong>Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF.</p><p><strong>Conclusion: </strong>Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm<sup>2</sup>, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"621-636"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MRI-based virtual pathology of the prostate.","authors":"Aritrick Chatterjee, Durgesh Kumar Dwivedi","doi":"10.1007/s10334-024-01163-w","DOIUrl":"10.1007/s10334-024-01163-w","url":null,"abstract":"<p><p>Prostate cancer poses significant diagnostic challenges, with conventional methods like prostate-specific antigen (PSA) screening and transrectal ultrasound (TRUS)-guided biopsies often leading to overdiagnosis or miss clinically significant cancers. Multiparametric MRI (mpMRI) has emerged as a more reliable tool. However, it is limited by high inter-observer variability and radiologists missing up to 30% of clinically significant cancers. This article summarizes a few of these recent advancements in quantitative MRI techniques that look at the \"Virtual Pathology\" of the prostate with an aim to enhance prostate cancer detection and characterization. These techniques include T2 relaxation-based techniques such as luminal water imaging, diffusion based such as vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) and restriction spectrum imaging or combined relaxation-diffusion techniques such as hybrid multi-dimensional MRI (HM-MRI), time-dependent diffusion imaging, and diffusion-relaxation correlation spectrum imaging. These methods provide detailed insights into underlying prostate microstructure and tissue composition and have shown improved diagnostic accuracy over conventional MRI. These innovative MRI methods hold potential for augmenting mpMRI, reducing variability in diagnosis, and paving the way for MRI as a 'virtual histology' tool in prostate cancer diagnosis. However, they require further validation in larger multi-center clinical settings and rigorous in-depth radiological-pathology correlation are needed for broader implementation.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"709-720"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nima Gilani, Artem Mikheev, Inge M Brinkmann, Malika Kumbella, James S Babb, Dibash Basukala, Andreas Wetscherek, Thomas Benkert, Hersh Chandarana, Eric E Sigmund
{"title":"Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney.","authors":"Nima Gilani, Artem Mikheev, Inge M Brinkmann, Malika Kumbella, James S Babb, Dibash Basukala, Andreas Wetscherek, Thomas Benkert, Hersh Chandarana, Eric E Sigmund","doi":"10.1007/s10334-024-01159-6","DOIUrl":"10.1007/s10334-024-01159-6","url":null,"abstract":"<p><strong>Objective: </strong>Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers.</p><p><strong>Materials and methods: </strong>In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled \"REnal Flow and Microstructure AnisotroPy (REFMAP)\", and a multiply encoded model titled \"FC-IVIM\" providing estimates of fluid velocity and branching length.</p><p><strong>Results: </strong>Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001).</p><p><strong>Conclusions: </strong>These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"671-680"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963357/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free-breathing MRI techniques for fat and R<sub>2</sub>* quantification in the liver.","authors":"Shu-Fu Shih, Holden H Wu","doi":"10.1007/s10334-024-01187-2","DOIUrl":"10.1007/s10334-024-01187-2","url":null,"abstract":"<p><strong>Objective: </strong>To review the recent advancements in free-breathing MRI techniques for proton-density fat fraction (PDFF) and R<sub>2</sub>* quantification in the liver, and discuss the current challenges and future opportunities.</p><p><strong>Materials and methods: </strong>This work focused on recent developments of different MRI pulse sequences, motion management strategies, and reconstruction approaches that enable free-breathing liver PDFF and R<sub>2</sub>* quantification.</p><p><strong>Results: </strong>Different free-breathing liver PDFF and R<sub>2</sub>* quantification techniques have been evaluated in various cohorts, including healthy volunteers and patients with liver diseases, both in adults and children. Initial results demonstrate promising performance with respect to reference measurements. These techniques have a high potential impact on providing a solution to the clinical need of accurate liver fat and iron quantification in populations with limited breath-holding capacity.</p><p><strong>Discussion: </strong>As these free-breathing techniques progress toward clinical translation, studies of the linearity, bias, and repeatability of free-breathing PDFF and R<sub>2</sub>* quantification in a larger cohort are important. Scan acceleration and improved motion management also hold potential for further enhancement.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"583-602"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathryn E Keenan, Kalina V Jordanova, Stephen E Ogier, Daiki Tamada, Natalie Bruhwiler, Jitka Starekova, Jon Riek, Paul J McCracken, Diego Hernando
{"title":"Phantoms for Quantitative Body MRI: a review and discussion of the phantom value.","authors":"Kathryn E Keenan, Kalina V Jordanova, Stephen E Ogier, Daiki Tamada, Natalie Bruhwiler, Jitka Starekova, Jon Riek, Paul J McCracken, Diego Hernando","doi":"10.1007/s10334-024-01181-8","DOIUrl":"10.1007/s10334-024-01181-8","url":null,"abstract":"<p><p>In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"535-549"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ebony R Gunwhy, Catherine D G Hines, Claudia Green, Iina Laitinen, Sirisha Tadimalla, Paul D Hockings, Gunnar Schütz, J Gerry Kenna, Steven Sourbron, John C Waterton
{"title":"Assessment of hepatic transporter function in rats using dynamic gadoxetate-enhanced MRI: a reproducibility study.","authors":"Ebony R Gunwhy, Catherine D G Hines, Claudia Green, Iina Laitinen, Sirisha Tadimalla, Paul D Hockings, Gunnar Schütz, J Gerry Kenna, Steven Sourbron, John C Waterton","doi":"10.1007/s10334-024-01192-5","DOIUrl":"10.1007/s10334-024-01192-5","url":null,"abstract":"<p><strong>Objective: </strong>Previous studies have revealed a substantial between-centre variability in DCE-MRI biomarkers of hepatocellular function in rats. This study aims to identify the main sources of variability by comparing data measured at different centres and field strengths, at different days in the same subjects, and over the course of several months in the same centre.</p><p><strong>Materials and methods: </strong>13 substudies were conducted across three facilities on two 4.7 T and two 7 T scanners using a 3D spoiled gradient echo acquisition. All substudies included 3-6 male Wistar-Han rats each, either scanned once with vehicle (n = 76) or twice with either vehicle (n = 19) or 10 mg/kg of rifampicin (n = 13) at follow-up. Absolute values, between-centre reproducibility, within-subject repeatability, detection limits, and effect sizes were derived for hepatocellular uptake rate (K<sup>trans</sup>) and biliary excretion rate (k<sub>bh</sub>). Sources of variability were identified using analysis of variance and stratification by centre, field strength, and time period.</p><p><strong>Results: </strong>Data showed significant differences between substudies of 31% for K<sup>trans</sup> (p = 0.013) and 43% for k<sub>bh</sub> (p < 0.001). Within-subject differences were substantially smaller for k<sub>bh</sub> (8%) but less so for K<sup>trans</sup> (25%). Rifampicin-induced inhibition was safely above the detection limits, with an effect size of 75 ± 3% in K<sup>trans</sup> and 67 ± 8% in k<sub>bh</sub>. Most of the variability in individual data was accounted for by between-subject (K<sup>trans</sup> = 23.5%; k<sub>bh</sub> = 42.5%) and between-centre (K<sup>trans</sup> = 44.9%; k<sub>bh</sub> = 50.9%) variability, substantially more than the between-day variation (K<sup>trans</sup> = 0.1%; k<sub>bh</sub> = 5.6%). Significant differences in k<sub>bh</sub> were found between field strengths at the same centre, between centres at the same field strength, and between repeat experiments over 2 months apart in the same centre.</p><p><strong>Discussion: </strong>Between-centre bias caused by factors such as hardware differences, subject preparations, and operator dependence is the main source of variability in DCE-MRI of liver function in rats, closely followed by biological between-subject differences. Future method development should focus on reducing these sources of error to minimise the sample sizes needed to detect more subtle levels of inhibition.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"697-708"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}