Magnetic Resonance Materials in Physics, Biology and Medicine最新文献

筛选
英文 中文
Metabolic changes assessed by 1H MR spectroscopy in the corpus callosum of post-COVID patients. 通过 1H MR 光谱评估 COVID 后患者胼胝体的代谢变化。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-06-12 DOI: 10.1007/s10334-024-01171-w
Dita Pajuelo, Monika Dezortova, Milan Hajek, Marketa Ibrahimova, Ibrahim Ibrahim
{"title":"Metabolic changes assessed by 1H MR spectroscopy in the corpus callosum of post-COVID patients.","authors":"Dita Pajuelo, Monika Dezortova, Milan Hajek, Marketa Ibrahimova, Ibrahim Ibrahim","doi":"10.1007/s10334-024-01171-w","DOIUrl":"10.1007/s10334-024-01171-w","url":null,"abstract":"<p><strong>Objective: </strong>Many patients with long COVID experience neurological and psychological symptoms. Signal abnormalities on MR images in the corpus callosum have been reported. Knowledge about the metabolic profile in the splenium of the corpus callosum (CCS) may contribute to a better understanding of the pathophysiology of long COVID.</p><p><strong>Materials and methods: </strong>Eighty-one subjects underwent proton MR spectroscopy examination. The metabolic concentrations of total N-acetylaspartate (NAA), choline-containing compounds (Cho), total creatine (Cr), myo-inositol (mI), and NAA/Cho in the CCS were statistically compared in the group of patients containing 58 subjects with positive IgG COVID-19 antibodies or positive SARS-CoV-2 qPCR test at least two months before the MR and the group of healthy controls containing 23 subjects with negative IgG antibodies.</p><p><strong>Results: </strong>An age-dependent effect of SARS-CoV-2 on Cho concentrations in the CCS has been observed. Considering the subjective threshold of age = 40 years, older patients showed significantly increased Cho concentrations in the CCS than older healthy controls (p = 0.02). NAA, Cr, and mI were unchanged. All metabolite concentrations in the CCS of younger post-COVID-19 patients remained unaffected by SARS-CoV-2. Cho did not show any difference between symptomatic and asymptomatic patients (p = 0.91).</p><p><strong>Discussion: </strong>Our results suggest that SARS-CoV-2 disproportionately increases Cho concentration in the CCS among older post-COVID-19 patients compared to younger ones. The observed changes in Cho may be related to the microstructural reorganization in the CCS also reported in diffusion measurements rather than increased membrane turnover. These changes do not seem to be related to neuropsychological problems of the post-COVID-19 patients. Further metabolic studies are recommended to confirm these observations.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"937-946"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion weighted imaging combining respiratory triggering and navigator echo tracking in the upper abdomen. 结合呼吸触发和导航回波跟踪的上腹部弥散加权成像。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-02-24 DOI: 10.1007/s10334-024-01150-1
Yoshihiko Tachikawa, Hiroshi Hamano, Naoya Chiwata, Hikaru Yoshikai, Kento Ikeda, Yasunori Maki, Yukihiko Takahashi, Makiko Koike
{"title":"Diffusion weighted imaging combining respiratory triggering and navigator echo tracking in the upper abdomen.","authors":"Yoshihiko Tachikawa, Hiroshi Hamano, Naoya Chiwata, Hikaru Yoshikai, Kento Ikeda, Yasunori Maki, Yukihiko Takahashi, Makiko Koike","doi":"10.1007/s10334-024-01150-1","DOIUrl":"10.1007/s10334-024-01150-1","url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate a new motion correction method, named RT + NV Track, for upper abdominal DWI that combines the respiratory triggering (RT) method using a respiration sensor and the Navigator Track (NV Track) method using navigator echoes.</p><p><strong>Materials and methods: </strong>To evaluate image quality acquired upper abdominal DWI and ADC images with RT, NV, and RT + NV Track in 10 healthy volunteers and 35 patients, signal-to-noise efficiency (SNR<sub>efficiency</sub>) and the coefficient of variation (CV) of ADC values were measured. Five radiologists independently performed qualitative image-analysis assessments.</p><p><strong>Results: </strong>RT + NV Track showed significantly higher SNR<sub>efficiency</sub> than RT and NV (14.01 ± 4.86 vs 12.05 ± 4.65, 10.05 ± 3.18; p < 0.001, p < 0.001). RT + NV Track was superior to RT and equal or better quality than NV in CV and visual evaluation of ADC values (0.033 ± 0.018 vs 0.080 ± 0.042, 0.057 ± 0.034; p < 0.001, p < 0.001). RT + NV Track tends to acquire only expiratory data rather than NV, even in patients with relatively rapid breathing, and can correct for respiratory depth variations, a weakness of RT, thus minimizing image quality degradation.</p><p><strong>Conclusion: </strong>The RT + NV Track method is an efficient imaging method that combines the advantages of both RT and NV methods in upper abdominal DWI, providing stably good images in a short scan time.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"873-886"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A straightforward procedure to build a non-toxic relaxometry phantom with desired T1 and T2 times at 3T. 在 3T 下构建具有所需 T1 和 T2 时间的无毒弛豫测量模型的直接程序。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-05-11 DOI: 10.1007/s10334-024-01166-7
Victor Fritz, Sabine Eisele, Petros Martirosian, Jürgen Machann, Fritz Schick
{"title":"A straightforward procedure to build a non-toxic relaxometry phantom with desired T1 and T2 times at 3T.","authors":"Victor Fritz, Sabine Eisele, Petros Martirosian, Jürgen Machann, Fritz Schick","doi":"10.1007/s10334-024-01166-7","DOIUrl":"10.1007/s10334-024-01166-7","url":null,"abstract":"<p><strong>Objective: </strong>To prepare and analyze soy-lecithin-agar gels for non-toxic relaxometry phantoms with tissue-like relaxation times at 3T.</p><p><strong>Methods: </strong>Phantoms mimicking the relaxation times of various tissues (gray and white matter, kidney cortex and medulla, spleen, muscle, liver) were built and tested with a clinical 3T whole-body MR scanner. Simple equations were derived to calculate the appropriate concentrations of soy lecithin and agar in aqueous solutions to achieve the desired relaxation times. Phantoms were tested for correspondence between measurements and calculated T1 and T2 values, reproducibility, spatial homogeneity, and temporal stability. T1 and T2 mapping techniques and a 3D T1-weighted sequence with high spatial resolution were applied.</p><p><strong>Results: </strong>Except for the liver relaxation phantom, all phantoms were successfully and reproducibly produced. Good agreement was found between the targeted and measured relaxation times. The percentage deviations from the targeted relaxation times were less than 3% for T1 and less than 6.5% for T2. In addition, the phantoms were homogeneous and had little to no air bubbles. However, the phantoms were unstable over time: after a storage period of 4 weeks, mold growth and also changes in relaxation times were detected in almost all phantoms.</p><p><strong>Conclusion: </strong>Soy-lecithin-agar gels are a non-toxic material for the construction of relaxometry phantoms with tissue-like relaxation times. They are easy to prepare, inexpensive and allow independent adjustment of T1 and T2. However, there is still work to be done to improve the long-term stability of the phantoms.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"899-907"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards retrospective motion correction and reconstruction for clinical 3D brain MRI protocols with a reference contrast. 为临床三维脑部磁共振成像方案的回溯运动校正和重建提供参考对比。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-05-17 DOI: 10.1007/s10334-024-01161-y
Gabrio Rizzuti, Tim Schakel, Niek R F Huttinga, Jan Willem Dankbaar, Tristan van Leeuwen, Alessandro Sbrizzi
{"title":"Towards retrospective motion correction and reconstruction for clinical 3D brain MRI protocols with a reference contrast.","authors":"Gabrio Rizzuti, Tim Schakel, Niek R F Huttinga, Jan Willem Dankbaar, Tristan van Leeuwen, Alessandro Sbrizzi","doi":"10.1007/s10334-024-01161-y","DOIUrl":"10.1007/s10334-024-01161-y","url":null,"abstract":"<p><strong>Object: </strong>In a typical MR session, several contrasts are acquired. Due to the sequential nature of the data acquisition process, the patient may experience some discomfort at some point during the session, and start moving. Hence, it is quite common to have MR sessions where some contrasts are well-resolved, while other contrasts exhibit motion artifacts. Instead of repeating the scans that are corrupted by motion, we introduce a reference-guided retrospective motion correction scheme that takes advantage of the motion-free scans, based on a generalized rigid registration routine.</p><p><strong>Materials and methods: </strong>We focus on various existing clinical 3D brain protocols at 1.5 Tesla MRI based on Cartesian sampling. Controlled experiments with three healthy volunteers and three levels of motion are performed.</p><p><strong>Results: </strong>Radiological inspection confirms that the proposed method consistently ameliorates the corrupted scans. Furthermore, for the set of specific motion tests performed in this study, the quality indexes based on PSNR and SSIM shows only a modest decrease in correction quality as a function of motion complexity.</p><p><strong>Discussion: </strong>While the results on controlled experiments are positive, future applications to patient data will ultimately clarify whether the proposed correction scheme satisfies the radiological requirements.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"807-823"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of truncating diffusion MRI scans on diffusional kurtosis imaging. 截断弥散核磁共振成像扫描对弥散峰度成像的影响。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-02-23 DOI: 10.1007/s10334-024-01153-y
Ana R Fouto, Rafael N Henriques, Marc Golub, Andreia C Freitas, Amparo Ruiz-Tagle, Inês Esteves, Raquel Gil-Gouveia, Nuno A Silva, Pedro Vilela, Patrícia Figueiredo, Rita G Nunes
{"title":"Impact of truncating diffusion MRI scans on diffusional kurtosis imaging.","authors":"Ana R Fouto, Rafael N Henriques, Marc Golub, Andreia C Freitas, Amparo Ruiz-Tagle, Inês Esteves, Raquel Gil-Gouveia, Nuno A Silva, Pedro Vilela, Patrícia Figueiredo, Rita G Nunes","doi":"10.1007/s10334-024-01153-y","DOIUrl":"10.1007/s10334-024-01153-y","url":null,"abstract":"<p><strong>Objective: </strong>Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (Opt<sub>EEM</sub>); 2) spherical codes (Opt<sub>SC</sub>); 3) random (Random<sub>TRUNC</sub>).</p><p><strong>Materials and methods: </strong>Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively.</p><p><strong>Results: </strong>Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). Random<sub>TRUNC</sub> performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (Opt<sub>EEM</sub>: up to 5% error; Opt<sub>SC</sub>: up to 7% error) and peak height (Opt<sub>EEM</sub>: up to 8% error; Opt<sub>SC</sub>: up to 11% error) the most affected.</p><p><strong>Conclusion: </strong>The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"859-872"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressed SVD-based L + S model to reconstruct undersampled dynamic MRI data using parallel architecture. 基于压缩svd的L + S模型并行重构欠采样动态MRI数据。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2023-11-18 DOI: 10.1007/s10334-023-01128-5
Muhammad Shafique, Sohaib Ayaz Qazi, Hammad Omer
{"title":"Compressed SVD-based L + S model to reconstruct undersampled dynamic MRI data using parallel architecture.","authors":"Muhammad Shafique, Sohaib Ayaz Qazi, Hammad Omer","doi":"10.1007/s10334-023-01128-5","DOIUrl":"10.1007/s10334-023-01128-5","url":null,"abstract":"<p><strong>Background: </strong>Magnetic Resonance Imaging (MRI) is a highly demanded medical imaging system due to high resolution, large volumetric coverage, and ability to capture the dynamic and functional information of body organs e.g. cardiac MRI is employed to assess cardiac structure and evaluate blood flow dynamics through the cardiac valves. Long scan time is the main drawback of MRI, which makes it difficult for the patients to remain still during the scanning process.</p><p><strong>Objective: </strong>By collecting fewer measurements, MRI scan time can be shortened, but this undersampling causes aliasing artifacts in the reconstructed images. Advanced image reconstruction algorithms have been used in literature to overcome these undersampling artifacts. These algorithms are computationally expensive and require a long time for reconstruction which makes them infeasible for real-time clinical applications e.g. cardiac MRI. However, exploiting the inherent parallelism in these algorithms can help to reduce their computation time.</p><p><strong>Methods: </strong>Low-rank plus sparse (L+S) matrix decomposition model is a technique used in literature to reconstruct the highly undersampled dynamic MRI (dMRI) data at the expense of long reconstruction time. In this paper, Compressed Singular Value Decomposition (cSVD) model is used in L+S decomposition model (instead of conventional SVD) to reduce the reconstruction time. The results provide improved quality of the reconstructed images. Furthermore, it has been observed that cSVD and other parts of the L+S model possess highly parallel operations; therefore, a customized GPU based parallel architecture of the modified L+S model has been presented to further reduce the reconstruction time.</p><p><strong>Results: </strong>Four cardiac MRI datasets (three different cardiac perfusion acquired from different patients and one cardiac cine data), each with different acceleration factors of 2, 6 and 8 are used for experiments in this paper. Experimental results demonstrate that using the proposed parallel architecture for the reconstruction of cardiac perfusion data provides a speed-up factor up to 19.15× (with memory latency) and 70.55× (without memory latency) in comparison to the conventional CPU reconstruction with no compromise on image quality.</p><p><strong>Conclusion: </strong>The proposed method is well-suited for real-time clinical applications, offering a substantial reduction in reconstruction time.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"825-844"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. 更正:在ESMRMB年会上,MR超越了诊断:磁共振治疗和干预。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 DOI: 10.1007/s10334-024-01201-7
Milan Hájek, Ulrich Flögel, Adriana A S Tavares, Lucia Nichelli, Aneurin Kennerley, Thomas Kahn, Jurgen J Futterer, Aikaterini Fitsiori, Holger Grüll, Nandita Saha, Felipe Couñago, Dogu Baran Aydogan, Maria Eugenia Caligiuri, Cornelius Faber, Laura C Bell, Patrícia Figueiredo, Joan C Vilanova, Francesco Santini, Ralf Mekle, Sonia Waiczies
{"title":"Correction to: MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention.","authors":"Milan Hájek, Ulrich Flögel, Adriana A S Tavares, Lucia Nichelli, Aneurin Kennerley, Thomas Kahn, Jurgen J Futterer, Aikaterini Fitsiori, Holger Grüll, Nandita Saha, Felipe Couñago, Dogu Baran Aydogan, Maria Eugenia Caligiuri, Cornelius Faber, Laura C Bell, Patrícia Figueiredo, Joan C Vilanova, Francesco Santini, Ralf Mekle, Sonia Waiczies","doi":"10.1007/s10334-024-01201-7","DOIUrl":"10.1007/s10334-024-01201-7","url":null,"abstract":"","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"947-948"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
s2MRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer's disease solely from structural MRI. s2MRI-ADNet:一种可解释的深度学习框架,仅从结构性核磁共振成像中整合阿尔茨海默病的欧氏图表征。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-06-13 DOI: 10.1007/s10334-024-01178-3
Zhiwei Song, Honglun Li, Yiyu Zhang, Chuanzhen Zhu, Minbo Jiang, Limei Song, Yi Wang, Minhui Ouyang, Fang Hu, Qiang Zheng
{"title":"s<sup>2</sup>MRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer's disease solely from structural MRI.","authors":"Zhiwei Song, Honglun Li, Yiyu Zhang, Chuanzhen Zhu, Minbo Jiang, Limei Song, Yi Wang, Minhui Ouyang, Fang Hu, Qiang Zheng","doi":"10.1007/s10334-024-01178-3","DOIUrl":"10.1007/s10334-024-01178-3","url":null,"abstract":"<p><strong>Objective: </strong>To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD.</p><p><strong>Methods: </strong>A total of 3377 participants' sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called s<sup>2</sup>MRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy.</p><p><strong>Results: </strong>The s<sup>2</sup>MRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases (p < 0.05). Significant associations (p < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation.</p><p><strong>Conclusion: </strong>The s<sup>2</sup>MRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"845-857"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scoping review of magnetic resonance motion imaging phantoms. 磁共振运动成像模型的范围审查。
IF 2 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-05-13 DOI: 10.1007/s10334-024-01164-9
Alexander Dunn, Sophie Wagner, Dafna Sussman
{"title":"Scoping review of magnetic resonance motion imaging phantoms.","authors":"Alexander Dunn, Sophie Wagner, Dafna Sussman","doi":"10.1007/s10334-024-01164-9","DOIUrl":"10.1007/s10334-024-01164-9","url":null,"abstract":"<p><p>To review and analyze the currently available MRI motion phantoms. Publications were collected from the Toronto Metropolitan University Library, PubMed, and IEEE Xplore. Phantoms were categorized based on the motions they generated: linear/cartesian, cardiac-dilative, lung-dilative, rotational, deformation or rolling. Metrics were extracted from each publication to assess the motion mechanisms, construction methods, as well as phantom validation. A total of 60 publications were reviewed, identifying 48 unique motion phantoms. Translational movement was the most common movement (used in 38% of phantoms), followed by cardiac-dilative (27%) movement and rotational movement (23%). The average degrees of freedom for all phantoms were determined to be 1.42. Motion phantom publications lack quantification of their impact on signal-to-noise ratio through standardized testing. At present, there is a lack of phantoms that are designed for multi-role as many currently have few degrees of freedom.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"791-805"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative body magnetic resonance imaging: how to make it work. 定量人体磁共振成像:如何使其发挥作用。
IF 2.3 4区 医学
Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-09-11 DOI: 10.1007/s10334-024-01204-4
Octavia Bane,Durgesh Kumar Dwivedi,Susan T Francis,Dimitrios Karampinos,Holden H Wu,Takeshi Yokoo
{"title":"Quantitative body magnetic resonance imaging: how to make it work.","authors":"Octavia Bane,Durgesh Kumar Dwivedi,Susan T Francis,Dimitrios Karampinos,Holden H Wu,Takeshi Yokoo","doi":"10.1007/s10334-024-01204-4","DOIUrl":"https://doi.org/10.1007/s10334-024-01204-4","url":null,"abstract":"","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":"78 3 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信