Ebony R Gunwhy, Catherine D G Hines, Claudia Green, Iina Laitinen, Sirisha Tadimalla, Paul D Hockings, Gunnar Schütz, J Gerry Kenna, Steven Sourbron, John C Waterton
{"title":"利用动态钆喷酸增强核磁共振成像评估大鼠肝脏转运体功能:一项重现性研究。","authors":"Ebony R Gunwhy, Catherine D G Hines, Claudia Green, Iina Laitinen, Sirisha Tadimalla, Paul D Hockings, Gunnar Schütz, J Gerry Kenna, Steven Sourbron, John C Waterton","doi":"10.1007/s10334-024-01192-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Previous studies have revealed a substantial between-centre variability in DCE-MRI biomarkers of hepatocellular function in rats. This study aims to identify the main sources of variability by comparing data measured at different centres and field strengths, at different days in the same subjects, and over the course of several months in the same centre.</p><p><strong>Materials and methods: </strong>13 substudies were conducted across three facilities on two 4.7 T and two 7 T scanners using a 3D spoiled gradient echo acquisition. All substudies included 3-6 male Wistar-Han rats each, either scanned once with vehicle (n = 76) or twice with either vehicle (n = 19) or 10 mg/kg of rifampicin (n = 13) at follow-up. Absolute values, between-centre reproducibility, within-subject repeatability, detection limits, and effect sizes were derived for hepatocellular uptake rate (K<sup>trans</sup>) and biliary excretion rate (k<sub>bh</sub>). Sources of variability were identified using analysis of variance and stratification by centre, field strength, and time period.</p><p><strong>Results: </strong>Data showed significant differences between substudies of 31% for K<sup>trans</sup> (p = 0.013) and 43% for k<sub>bh</sub> (p < 0.001). Within-subject differences were substantially smaller for k<sub>bh</sub> (8%) but less so for K<sup>trans</sup> (25%). Rifampicin-induced inhibition was safely above the detection limits, with an effect size of 75 ± 3% in K<sup>trans</sup> and 67 ± 8% in k<sub>bh</sub>. Most of the variability in individual data was accounted for by between-subject (K<sup>trans</sup> = 23.5%; k<sub>bh</sub> = 42.5%) and between-centre (K<sup>trans</sup> = 44.9%; k<sub>bh</sub> = 50.9%) variability, substantially more than the between-day variation (K<sup>trans</sup> = 0.1%; k<sub>bh</sub> = 5.6%). Significant differences in k<sub>bh</sub> were found between field strengths at the same centre, between centres at the same field strength, and between repeat experiments over 2 months apart in the same centre.</p><p><strong>Discussion: </strong>Between-centre bias caused by factors such as hardware differences, subject preparations, and operator dependence is the main source of variability in DCE-MRI of liver function in rats, closely followed by biological between-subject differences. Future method development should focus on reducing these sources of error to minimise the sample sizes needed to detect more subtle levels of inhibition.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"697-708"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417070/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of hepatic transporter function in rats using dynamic gadoxetate-enhanced MRI: a reproducibility study.\",\"authors\":\"Ebony R Gunwhy, Catherine D G Hines, Claudia Green, Iina Laitinen, Sirisha Tadimalla, Paul D Hockings, Gunnar Schütz, J Gerry Kenna, Steven Sourbron, John C Waterton\",\"doi\":\"10.1007/s10334-024-01192-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Previous studies have revealed a substantial between-centre variability in DCE-MRI biomarkers of hepatocellular function in rats. This study aims to identify the main sources of variability by comparing data measured at different centres and field strengths, at different days in the same subjects, and over the course of several months in the same centre.</p><p><strong>Materials and methods: </strong>13 substudies were conducted across three facilities on two 4.7 T and two 7 T scanners using a 3D spoiled gradient echo acquisition. All substudies included 3-6 male Wistar-Han rats each, either scanned once with vehicle (n = 76) or twice with either vehicle (n = 19) or 10 mg/kg of rifampicin (n = 13) at follow-up. Absolute values, between-centre reproducibility, within-subject repeatability, detection limits, and effect sizes were derived for hepatocellular uptake rate (K<sup>trans</sup>) and biliary excretion rate (k<sub>bh</sub>). Sources of variability were identified using analysis of variance and stratification by centre, field strength, and time period.</p><p><strong>Results: </strong>Data showed significant differences between substudies of 31% for K<sup>trans</sup> (p = 0.013) and 43% for k<sub>bh</sub> (p < 0.001). Within-subject differences were substantially smaller for k<sub>bh</sub> (8%) but less so for K<sup>trans</sup> (25%). Rifampicin-induced inhibition was safely above the detection limits, with an effect size of 75 ± 3% in K<sup>trans</sup> and 67 ± 8% in k<sub>bh</sub>. Most of the variability in individual data was accounted for by between-subject (K<sup>trans</sup> = 23.5%; k<sub>bh</sub> = 42.5%) and between-centre (K<sup>trans</sup> = 44.9%; k<sub>bh</sub> = 50.9%) variability, substantially more than the between-day variation (K<sup>trans</sup> = 0.1%; k<sub>bh</sub> = 5.6%). Significant differences in k<sub>bh</sub> were found between field strengths at the same centre, between centres at the same field strength, and between repeat experiments over 2 months apart in the same centre.</p><p><strong>Discussion: </strong>Between-centre bias caused by factors such as hardware differences, subject preparations, and operator dependence is the main source of variability in DCE-MRI of liver function in rats, closely followed by biological between-subject differences. Future method development should focus on reducing these sources of error to minimise the sample sizes needed to detect more subtle levels of inhibition.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"697-708\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01192-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01192-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Assessment of hepatic transporter function in rats using dynamic gadoxetate-enhanced MRI: a reproducibility study.
Objective: Previous studies have revealed a substantial between-centre variability in DCE-MRI biomarkers of hepatocellular function in rats. This study aims to identify the main sources of variability by comparing data measured at different centres and field strengths, at different days in the same subjects, and over the course of several months in the same centre.
Materials and methods: 13 substudies were conducted across three facilities on two 4.7 T and two 7 T scanners using a 3D spoiled gradient echo acquisition. All substudies included 3-6 male Wistar-Han rats each, either scanned once with vehicle (n = 76) or twice with either vehicle (n = 19) or 10 mg/kg of rifampicin (n = 13) at follow-up. Absolute values, between-centre reproducibility, within-subject repeatability, detection limits, and effect sizes were derived for hepatocellular uptake rate (Ktrans) and biliary excretion rate (kbh). Sources of variability were identified using analysis of variance and stratification by centre, field strength, and time period.
Results: Data showed significant differences between substudies of 31% for Ktrans (p = 0.013) and 43% for kbh (p < 0.001). Within-subject differences were substantially smaller for kbh (8%) but less so for Ktrans (25%). Rifampicin-induced inhibition was safely above the detection limits, with an effect size of 75 ± 3% in Ktrans and 67 ± 8% in kbh. Most of the variability in individual data was accounted for by between-subject (Ktrans = 23.5%; kbh = 42.5%) and between-centre (Ktrans = 44.9%; kbh = 50.9%) variability, substantially more than the between-day variation (Ktrans = 0.1%; kbh = 5.6%). Significant differences in kbh were found between field strengths at the same centre, between centres at the same field strength, and between repeat experiments over 2 months apart in the same centre.
Discussion: Between-centre bias caused by factors such as hardware differences, subject preparations, and operator dependence is the main source of variability in DCE-MRI of liver function in rats, closely followed by biological between-subject differences. Future method development should focus on reducing these sources of error to minimise the sample sizes needed to detect more subtle levels of inhibition.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.