Journal of Zhejiang University SCIENCE B最新文献

筛选
英文 中文
Comparison of nitrification inhibitors for mitigating cadmium accumulation in pakchoi and their associated microbial mechanisms. 比较硝化抑制剂在减轻柏木镉积累方面的作用及其相关微生物机制。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-09-15 DOI: 10.1631/jzus.B2300449
Wenxin DU, Qingyang Zhu, Xiangting Jing, Weijie Hu, Yao Zhuang, Yijie Jiang, Chongwei Jin
{"title":"Comparison of nitrification inhibitors for mitigating cadmium accumulation in pakchoi and their associated microbial mechanisms.","authors":"Wenxin DU, Qingyang Zhu, Xiangting Jing, Weijie Hu, Yao Zhuang, Yijie Jiang, Chongwei Jin","doi":"10.1631/jzus.B2300449","DOIUrl":"10.1631/jzus.B2300449","url":null,"abstract":"<p><p>The use of nitrification inhibitors has been suggested as a strategy to decrease cadmium (Cd) accumulation in crops. However, the most efficient nitrification inhibitor for mitigating crop Cd accumulation remains to be elucidated, and whether and how changes in soil microbial structure are involved in this process also remains unclear. To address these questions, this study applied three commercial nitrification inhibitors, namely, dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin (NP), to pakchoi. The results showed that both DCD and DMPP (but not NP) could efficiently decrease Cd concentrations in pakchoi in urea- and ammonium-fertilized soils. In addition, among the three tested nitrification inhibitors, DMPP was the most efficient in decreasing the Cd concentration in pakchoi. The nitrification inhibitors decreased pakchoi Cd concentrations by suppressing acidification-induced Cd availability and reshaping the soil microbial structure; the most effective nitrification inhibitor was DMPP. Ammonia oxidation generates the most protons during nitrification and is inhibited by nitrification inhibitors. Changes in environmental factors and predatory bacterial abundance caused by the nitrification inhibitors changed the soil microbial structure and increased the potential participants in plant Cd accumulation. In summary, our study identified DMPP as the most efficient nitrification inhibitor for mitigating crop Cd contamination and observed that the soil microbial structural changes caused by the nitrification inhibitors contributed to decreasing Cd concentration in pakchoi.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 9","pages":"773-788"},"PeriodicalIF":4.7,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. 西那苷调节AMPK/SIRT3/Nrf2通路以抑制多柔比星诱导的心肌细胞凋亡
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-09-12 DOI: 10.1631/jzus.B2300691
Hai Zou, Mengyu Zhang, Xue Yang, Huafeng Shou, Zhenglin Chen, Quanfeng Zhu, Ting Luo, Xiaozhou Mou, Xiaoyi Chen
{"title":"Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis.","authors":"Hai Zou, Mengyu Zhang, Xue Yang, Huafeng Shou, Zhenglin Chen, Quanfeng Zhu, Ting Luo, Xiaozhou Mou, Xiaoyi Chen","doi":"10.1631/jzus.B2300691","DOIUrl":"10.1631/jzus.B2300691","url":null,"abstract":"<p><p>Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (<i>NLRP3</i>), <i>caspase-1</i>, and gasdermin D (<i>GSDMD</i>). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (<i>AMPK</i>), peroxisome proliferator-activated receptor γ coactivator-1α (<i>PGC-1α</i>), sirtuin 3 (<i>SIRT3</i>), and nuclear factor erythroid 2-related factor 2 (<i>Nrf2</i>). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 9","pages":"756-772"},"PeriodicalIF":4.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides. 利用巴氏芽孢杆菌胞内蛋白伸长因子 Tu 揭示硒纳米粒子的创新绿色合成机制
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-19 DOI: 10.1631/jzus.B2300738
Pei Liu, Haiyu Long, Shuai He, Han Cheng, Erdong Li, Siyu Cheng, Mengdi Liang, Zhengwei Liu, Zhen Guo, Hao Shi
{"title":"Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from <i>Bacillus paramycoides</i>.","authors":"Pei Liu, Haiyu Long, Shuai He, Han Cheng, Erdong Li, Siyu Cheng, Mengdi Liang, Zhengwei Liu, Zhen Guo, Hao Shi","doi":"10.1631/jzus.B2300738","DOIUrl":"10.1631/jzus.B2300738","url":null,"abstract":"<p><p>Selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 9","pages":"789-795"},"PeriodicalIF":4.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide CRISPR screening identifies critical role of phosphatase and tensin homologous (PTEN) in sensitivity of acute myeloid leukemia to chemotherapy. 全基因组CRISPR筛选确定了磷酸酶和天丝同源蛋白(PTEN)在急性髓性白血病化疗敏感性中的关键作用。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300555
Liming Lin, Jingjing Tao, Ying Meng, Yichao Gan, Xin He, Shu Li, Jiawei Zhang, Feiqiong Gao, Dijia Xin, Luyao Wang, Yili Fan, Boxiao Chen, Zhimin Lu, Yang Xu
{"title":"Genome-wide CRISPR screening identifies critical role of phosphatase and tensin homologous (<i>PTEN</i>) in sensitivity of acute myeloid leukemia to chemotherapy.","authors":"Liming Lin, Jingjing Tao, Ying Meng, Yichao Gan, Xin He, Shu Li, Jiawei Zhang, Feiqiong Gao, Dijia Xin, Luyao Wang, Yili Fan, Boxiao Chen, Zhimin Lu, Yang Xu","doi":"10.1631/jzus.B2300555","DOIUrl":"10.1631/jzus.B2300555","url":null,"abstract":"<p><p>Although significant progress has been made in the development of novel targeted drugs for the treatment of acute myeloid leukemia (AML) in recent years, chemotherapy still remains the mainstay of treatment and the overall survival is poor in most patients. Here, we demonstrated the antileukemia activity of a novel small molecular compound NL101, which is formed through the modification on bendamustine with a suberanilohydroxamic acid (SAHA) radical. NL101 suppresses the proliferation of myeloid malignancy cells and primary AML cells. It induces DNA damage and caspase 3-mediated apoptosis. A genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library screen revealed that phosphatase and tensin homologous (<i>PTEN</i>) gene is critical for the regulation of cell survival upon NL101 treatment. The knockout or inhibition of <i>PTEN</i> significantly reduced NL101-induced apoptosis in AML and myelodysplastic syndrome (MDS) cells, accompanied by the activation of protein kinase B (AKT) signaling pathway. The inhibition of mammalian target of rapamycin (mTOR) by rapamycin enhanced the sensitivity of AML cells to NL101-induced cell death. These findings uncover PTEN protein expression as a major determinant of chemosensitivity to NL101 and provide a novel strategy to treat AML with the combination of NL101 and rapamycin.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"700-710"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatitis B virus infection, infertility, and assisted reproduction. 乙型肝炎病毒感染、不孕症和辅助生殖。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300261
Lingjian Zhang, Fangfang Zhang, Zhiyuan Ma, Jie Jin
{"title":"Hepatitis B virus infection, infertility, and assisted reproduction.","authors":"Lingjian Zhang, Fangfang Zhang, Zhiyuan Ma, Jie Jin","doi":"10.1631/jzus.B2300261","DOIUrl":"10.1631/jzus.B2300261","url":null,"abstract":"<p><p><b>BACKGROUND</b>: Hepatitis B virus (HBV) is one of the most widespread viruses worldwide and a major cause of hepatitis, cirrhosis, and hepatocellular carcinoma. Previous studies have revealed the impacts of HBV infection on fertility. An increasing number of infertile couples with chronic hepatitis B (CHB) virus infection choose assisted reproductive technology (ART) to meet their fertility needs. Despite the high prevalence of HBV, the effects of HBV infection on assisted reproduction treatment remain limited and contradictory. <b>OBJECTIVE</b>: The aim of this study was to provide a comprehensive overview of the effect of HBV infection on fertility and discuss its effects on pregnancy outcomes, vertical transmission, pregnancy complications, and viral activity during ART treatment. <b>METHODS</b>: We conducted a literature search in PubMed for studies on HBV infection and ART published from 1996 to 2022. <b>RESULTS</b>: HBV infection negatively affected fertility in both males and females. Existing research shows that HBV infection may increase the risk of pregnancy complications in couples undergoing assisted reproduction treatment. The impact of HBV infection on the pregnancy outcomes of ART is still controversial. Current evidence does not support that ART increases the risk of vertical transmission of HBV, while relevant studies are limited. With the development of ART, the risk of HBV reactivation (HBVr) is increasing, especially due to the wide application of immunosuppressive therapy. <b>CONCLUSIONS</b>: Regular HBV infection screening and HBVr risk stratification and management are essential to prevent HBVr during ART. The determination of optimal strategy and timing of prophylactic anti-HBV therapy during ART still needs further investigation.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"672-685"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waldenström macroglobulinemia: a challenging case treated with anti-CD19 CAR-T cell therapy. 瓦尔登斯特伦巨球蛋白血症:抗CD19 CAR-T细胞疗法治疗的挑战性病例。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300835
Yang Yang, Xiaolin Gu, Jingsong He, Yongxian Hu, Zhen Cai
{"title":"Waldenström macroglobulinemia: a challenging case treated with anti-CD19 CAR-T cell therapy.","authors":"Yang Yang, Xiaolin Gu, Jingsong He, Yongxian Hu, Zhen Cai","doi":"10.1631/jzus.B2300835","DOIUrl":"10.1631/jzus.B2300835","url":null,"abstract":"<p><p>Waldenström macroglobulinemia (WM) is characterized by lymphoplasmacytic lymphoma associated with large amounts of monoclonal immunoglobulin M (IgM) protein (Owen et al., 2003). Common signs and symptoms include fatigue due to anemia, lymph node enlargement, hepatosplenomegaly, thrombocytopenia, symptoms related to high viscosity, and peripheral neuropathy, among others. Despite significant advances in WM treatment, this type of indolent lymphoma remains incurable, with a wide array of patient outcomes (Ruan et al., 2020). In recent years, chimeric antigen receptor T (CAR-T) cell therapy targeting cluster of differentiation 19 (CD19) has shown unprecedented response rates and durability in the treatment of B-cell malignancies. In this report, we describe a challenging case of WM that involved multiple extramedullary sites, relapsed, and was refractory to chemotherapy, immunotherapy, and targeted therapy. After anti-CD19 CAR-T cell therapy, the tumor burden significantly decreased and the patient's condition remained stable at the writing of this report.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"719-722"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel clinical data management platform for acute pancreatitis. 新型急性胰腺炎临床数据管理平台。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300539
Shiyin Chen, Cheng Zhang, Zhi'en Wang, Jian Zhang, Wenqiao Yu, Yanshuai Wang, Weiwei Si, Tingbo Liang, Yun Zhang
{"title":"A novel clinical data management platform for acute pancreatitis.","authors":"Shiyin Chen, Cheng Zhang, Zhi'en Wang, Jian Zhang, Wenqiao Yu, Yanshuai Wang, Weiwei Si, Tingbo Liang, Yun Zhang","doi":"10.1631/jzus.B2300539","DOIUrl":"10.1631/jzus.B2300539","url":null,"abstract":"<p><p>This study presents a multi-center clinical data management platform that facilitates unified and structured management of real-world data and serves as an ideal tool to enhance the quality and progress of clinical research related to severe acute pancreatitis (SAP). The use of the platform enables clinical teams to obtain safe, accurate, structurally unified, traceable, scene-clear, and fully functional real-world medical data in the diagnosis, treatment, and research of acute pancreatitis (AP).</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"711-718"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell transcriptomics reveals tumor landscape in ovarian carcinosarcoma. 单细胞转录组学揭示卵巢癌肉瘤的肿瘤特征
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300407
Junfen Xu, Mengyan Tu
{"title":"Single-cell transcriptomics reveals tumor landscape in ovarian carcinosarcoma.","authors":"Junfen Xu, Mengyan Tu","doi":"10.1631/jzus.B2300407","DOIUrl":"10.1631/jzus.B2300407","url":null,"abstract":"<p><strong>Objectives: </strong>The present study used single-cell RNA sequencing (scRNA-seq) to characterize the cellular composition of ovarian carcinosarcoma (OCS) and identify its molecular characteristics.</p><p><strong>Methods: </strong>scRNA-seq was performed in resected primary OCS for an in-depth analysis of tumor cells and the tumor microenvironment. Immunohistochemistry staining was used for validation. The scRNA-seq data of OCS were compared with those of high-grade serous ovarian carcinoma (HGSOC) tumors and other OCS tumors.</p><p><strong>Results: </strong>Both malignant epithelial and malignant mesenchymal cells were observed in the OCS patient of this study. We identified four epithelial cell subclusters with different biological roles. Among them, epithelial subcluster 4 presented high levels of breast cancer type 1 susceptibility protein homolog (<i>BRCA1</i>) and DNA topoisomerase 2-α (<i>TOP2A</i>) expression and was related to drug resistance and cell cycle. We analyzed the interaction between epithelial and mesenchymal cells and found that fibroblast growth factor (FGF) and pleiotrophin (PTN) signalings were the main pathways contributing to communication between these cells. Moreover, we compared the malignant epithelial and mesenchymal cells of this OCS tumor with our previous published HGSOC scRNA-seq data and OCS data. All the epithelial subclusters in the OCS tumor could be found in the HGSOC samples. Notably, the mesenchymal subcluster C14 exhibited specific expression patterns in the OCS tumor, characterized by elevated expression of cytochrome P450 family 24 subfamily A member 1 (<i>CYP24A1</i>), collagen type XXIII α1 chain (<i>COL23A1</i>), cholecystokinin (<i>CCK</i>), bone morphogenetic protein 7 (<i>BMP7</i>), <i>PTN</i>, Wnt inhibitory factor 1 (<i>WIF1</i>), and insulin-like growth factor 2 (<i>IGF2</i>). Moreover, this subcluster showed distinct characteristics when compared with both another previously published OCS tumor and normal ovarian tissue.</p><p><strong>Conclusions: </strong>This study provides the single-cell transcriptomics signature of human OCS, which constitutes a new resource for elucidating OCS diversity.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"686-699"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. 细胞外囊泡 (EV) 在受体细胞中的旅程:从识别到货物释放。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300566
Huayuan Xiang, Chenxuan Bao, Qiaoqiao Chen, Qing Gao, Nan Wang, Qianqian Gao, Lingxiang Mao
{"title":"Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release.","authors":"Huayuan Xiang, Chenxuan Bao, Qiaoqiao Chen, Qing Gao, Nan Wang, Qianqian Gao, Lingxiang Mao","doi":"10.1631/jzus.B2300566","DOIUrl":"10.1631/jzus.B2300566","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"633-655"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optogenetics in oral and craniofacial research. 光遗传学在口腔和颅面研究中的应用。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-08-15 DOI: 10.1631/jzus.B2300322
Qinmeng Zhang, Luyao Song, Mengdie Fu, Jin He, Guoli Yang, Zhiwei Jiang
{"title":"Optogenetics in oral and craniofacial research.","authors":"Qinmeng Zhang, Luyao Song, Mengdie Fu, Jin He, Guoli Yang, Zhiwei Jiang","doi":"10.1631/jzus.B2300322","DOIUrl":"10.1631/jzus.B2300322","url":null,"abstract":"<p><p>Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here, we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research, focusing on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement, licking, eating, and drinking), such as channelrhodopsin (ChR), archaerhodopsin (Arch), and halorhodopsin from <i>Natronomonas pharaonis</i> (NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition, optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing, there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19), studying oral bacterial biofilms, enhancing craniomaxillofacial and periodontal tissue regeneration, and elucidating the possible pathogenesis of dry sockets, xerostomia, and burning mouth syndrome.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"656-671"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信