Jingjing Lu, Shoupeng Fu, J. Dai, Jianwen Hu, Shize Li, Hong Ji, Zhiquan Wang, Jiahong Yu, Jiming Bao, Bin Xu, Jingru Guo, Huanmin Yang
{"title":"Integrated metabolism and epigenetic modifications in the macrophages of mice in responses to cold stress","authors":"Jingjing Lu, Shoupeng Fu, J. Dai, Jianwen Hu, Shize Li, Hong Ji, Zhiquan Wang, Jiahong Yu, Jiming Bao, Bin Xu, Jingru Guo, Huanmin Yang","doi":"10.1631/jzus.B2101091","DOIUrl":"https://doi.org/10.1631/jzus.B2101091","url":null,"abstract":"The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"21 1","pages":"461 - 480"},"PeriodicalIF":5.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84109858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Lyu, Qin Su, Jinhui Liu, Lin Chen, Jiawei Sun, Wenqing Zhang
{"title":"Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)","authors":"Jun Lyu, Qin Su, Jinhui Liu, Lin Chen, Jiawei Sun, Wenqing Zhang","doi":"10.1631/jzus.B2101090","DOIUrl":"https://doi.org/10.1631/jzus.B2101090","url":null,"abstract":"PiggyBac is a transposable DNA element originally discovered in the cabbage looper moth (Trichoplusia ni). The T. ni piggyBac transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous piggyBac-like elements (PLEs) is important before using piggyBac, because they may influence the genetic stability of transgenic lines. Herein, we conducted a genome-wide analysis of PLEs in the brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), and identified a total of 28 PLE sequences. All N. lugens piggyBac-like elements (NlPLEs) were present as multiple copies in the genome of BPH. Among the identified NlPLEs, NlPLE25 had the highest copy number and it was distributed on five chromosomes. The full length of NlPLE25 consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, NlPLE25 transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the NlPLE25 transposon and the piggyBac transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"27 1","pages":"515 - 527"},"PeriodicalIF":5.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79253818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Di Zhang, W. Ren, Dong-Xu Han, Guokun Zhao, Haoqi Wang, Haixiang Guo, Yi Zheng, Zhong Ji, W. Gao, Bao Yuan
{"title":"LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells","authors":"Wei-Di Zhang, W. Ren, Dong-Xu Han, Guokun Zhao, Haoqi Wang, Haixiang Guo, Yi Zheng, Zhong Ji, W. Gao, Bao Yuan","doi":"10.1631/jzus.B2101052","DOIUrl":"https://doi.org/10.1631/jzus.B2101052","url":null,"abstract":"Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA—microRNA (miRNA)—messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"15 1","pages":"502 - 514"},"PeriodicalIF":5.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91212874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress","authors":"Jian Wang, Liqian Su, Lun Zhang, Jiali Zeng, Qingru Chen, Rui Deng, Zi-nen Wang, Weidong Kuang, X. Jin, Shuiqing Gui, Yinghua Xu, Xuemei Lu","doi":"10.1631/jzus.B2100988","DOIUrl":"https://doi.org/10.1631/jzus.B2100988","url":null,"abstract":"Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"18 1","pages":"481 - 501"},"PeriodicalIF":5.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80856485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis","authors":"Jiaqi Lu, Jingyuan Liu, Ang Li","doi":"10.1631/jzus.B2101075","DOIUrl":"https://doi.org/10.1631/jzus.B2101075","url":null,"abstract":"Sepsis is a condition of severe organ failure caused by the maladaptive response of the host to an infection. It is a severe complication affecting critically ill patients, which can progress to severe sepsis, septic shock, and ultimately death. As a vital part of the human innate immune system, neutrophils are essential in resisting pathogen invasion, infection, and immune surveillance. Neutrophil-produced reactive oxygen species (ROS) play a pivotal role in organ dysfunction related to sepsis. In recent years, ROS have received a lot of attention as a major cause of sepsis, which can progress to severe sepsis and septic shock. This paper reviews the existing knowledge on the production mechanism of neutrophil ROS in human organ function impairment because of sepsis.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"1 1","pages":"437 - 450"},"PeriodicalIF":5.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76012568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Mao, Lingkai Meng, Huayi Liu, Yuting Lu, Kuo Yang, Guangze Ouyang, Yanran Ban, Shuang Chen
{"title":"Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor","authors":"Y. Mao, Lingkai Meng, Huayi Liu, Yuting Lu, Kuo Yang, Guangze Ouyang, Yanran Ban, Shuang Chen","doi":"10.1631/jzus.B2101055","DOIUrl":"https://doi.org/10.1631/jzus.B2101055","url":null,"abstract":"Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"283 ","pages":"353 - 364"},"PeriodicalIF":5.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72421534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Xu, Li Zhang, D. K. W. Ocansey, Bo Wang, Yilin Hou, Rong Mei, Yongmin Yan, Xu Zhang, Zhaoyang Zhang, F. Mao
{"title":"HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway","authors":"Yuting Xu, Li Zhang, D. K. W. Ocansey, Bo Wang, Yilin Hou, Rong Mei, Yongmin Yan, Xu Zhang, Zhaoyang Zhang, F. Mao","doi":"10.1631/jzus.B2100793","DOIUrl":"https://doi.org/10.1631/jzus.B2100793","url":null,"abstract":"As a group of nonspecific inflammatory diseases affecting the intestine, inflammatory bowel disease (IBD) exhibits the characteristics of chronic recurring inflammation, and was proven to be increasing in incidence (Kaplan, 2015). IBD induced by genetic background, environmental changes, immune functions, microbial composition, and toxin exposures (Sasson et al., 2021) primarily includes ulcerative colitis (UC) and Crohn's disease (CD) with complicated clinical symptoms featured by abdominal pain, diarrhea, and even blood in stools (Fan et al., 2021; Huang et al., 2021). UC is mainly limited to the rectum and the colon, while CD usually impacts the terminal ileum and colon in a discontinuous manner (Ordás et al., 2012; Panés and Rimola, 2017). In recent years, many studies have suggested the lack of effective measures in the diagnosis and treatment of IBD, prompting an urgent need for new strategies to understand the mechanisms of and offer promising therapies for IBD.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"19 1","pages":"423 - 431"},"PeriodicalIF":5.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82251327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physicochemical properties, molecular structure, antioxidant activity, and biological function of extracellular melanin from Ascosphaera apis","authors":"Zhi Li, H. Heng, Qiqian Qin, Lanchun Chen, Yuedi Wang, Zeyang Zhou","doi":"10.1631/jzus.B2100718","DOIUrl":"https://doi.org/10.1631/jzus.B2100718","url":null,"abstract":"Ascosphaera apis spores containing a dark-colored pigment infect honeybee larvae, resulting in a large-scale collapse of the bee colony due to chalkbrood disease. However, little is known about the pigment or whether it plays a role in bee infection caused by A. apis. In this study, the pigment was isolated by alkali extraction, acid hydrolysis, and repeated precipitation. Ultraviolet (UV) analysis revealed that the pigment had a color value of 273, a maximum absorption peak at 195 nm, and a high alkaline solubility (7.67%) and acid precipitability. Further chemical structure analysis of the pigment, including elemental composition, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectrometry, and nuclear magnetic resonance (NMR), proved that it was a eumelanin with a typical indole structure. The molecular formula of melanin is C10H6O4N2, and its molecular weight is 409 Da. Melanin has hydroxyl, carboxyl, amino, and phenolic groups that can potentially chelate to metal ions. Antioxidant function analyses showed that A. apis melanin had a high scavenging activity against superoxide, hydroxyl, and 2,2-diphenyl-1-picrylhyclrazyl (DPPH) radicals, and a high reducing ability to Fe3+. Indirect immunofluorescence assay (IFA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses showed that A. apis melanin was located on the spore wall. The spore wall localization, antioxidant activity, and metal ion chelating properties of fungal melanin have been suggested to contribute to spore pathogenicity. However, further infection experiments showed that melanin-deficient spores did not reduce the mortality of bee larvae, indicating that melanin does not increase the virulence of A. apis spores. This study is the first report on melanin produced by A. apis, providing an important background reference for further study on its role in A. apis.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"1 1","pages":"365 - 381"},"PeriodicalIF":5.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90050635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-liang Guo, Siyu Song, Xiaoxiao Du, Li Tian, Man Zhang, Hongmin Zhou, Z. Chen, Sheng Chang
{"title":"Romidepsin (FK228) improves the survival of allogeneic skin grafts through downregulating the production of donor-specific antibody via suppressing the IRE1α-XBP1 pathway","authors":"Yu-liang Guo, Siyu Song, Xiaoxiao Du, Li Tian, Man Zhang, Hongmin Zhou, Z. Chen, Sheng Chang","doi":"10.1631/jzus.B2100780","DOIUrl":"https://doi.org/10.1631/jzus.B2100780","url":null,"abstract":"Antibody-mediated rejection (AMR) is one of the major causes of graft loss after transplantation. Recently, the regulation of B cell differentiation and the prevention of donor-specific antibody (DSA) production have gained increased attention in transplant research. Herein, we established a secondary allogeneic in vivo skin transplant model to study the effects of romidepsin (FK228) on DSA. The survival of grafted skins was monitored daily. The serum levels of DSA and the number of relevant immunocytes in the recipient spleens were evaluated by flow cytometry. Then, we isolated and purified B cells from B6 mouse spleens in vitro by magnetic bead sorting. The B cells were cultured with interleukin-4 (IL-4) and anti-clusters of differentiation 40 (CD40) antibody with or without FK228 treatment. The immunoglobulin G1 (IgG1) and IgM levels in the supernatant were evaluated by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting were conducted to determine the corresponding levels of messenger RNA (mRNA) and protein expression in cultured cells and the recipient spleens. The results showed that FK228 significantly improved the survival of allogeneic skin grafts. Moreover, FK228 inhibited DSA production in the serum along with the suppression of histone deacetylase 1 (HADC1) and HDAC2 and the upregulation of the acetylation of histones H2A and H3. It also inhibited the differentiation of B cells to plasma cells, decreased the transcription of positive regulatory domain-containing 1 (Prdm1) and X-box-binding protein 1 (Xbp1), and decreased the expression of phosphorylated inositol-requiring enzyme 1 α (p-IRE1α), XBP1, and B lymphocyte-induced maturation protein-1 (Blimp-1). In conclusion, FK228 could decrease the production of antibodies by B cells via inhibition of the IRE1α-XBP1 signaling pathway. Thus, FK228 is considered as a promising therapeutic agent for the clinical treatment of AMR.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"45 1","pages":"392 - 406"},"PeriodicalIF":5.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88414694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinbin Ye, H. Xi, Yilu Chen, Qishu Chen, Xiaosheng Lu, Jineng Lv, Yamin Chen, Feng Gu, Junzhao Zhao
{"title":"Can SpRY recognize any PAM in human cells?","authors":"Jinbin Ye, H. Xi, Yilu Chen, Qishu Chen, Xiaosheng Lu, Jineng Lv, Yamin Chen, Feng Gu, Junzhao Zhao","doi":"10.1631/jzus.B2100710","DOIUrl":"https://doi.org/10.1631/jzus.B2100710","url":null,"abstract":"The application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) can be limited due to a lack of compatible protospacer adjacent motif (PAM) sequences in the DNA regions of interest. Recently, SpRY, a variant of Streptococcus pyogenes Cas9 (SpCas9), was reported, which nearly completely fulfils the PAM requirement. Meanwhile, PAMs for SpRY have not been well addressed. In our previous study, we developed the PAM Definition by Observable Sequence Excision (PAM-DOSE) and green fluorescent protein (GFP)-reporter systems to study PAMs in human cells. Herein, we endeavored to identify the PAMs of SpRY with these two methods. The results indicated that 5′-NRN-3′, 5′-NTA-3′, and 5′-NCK-3′ could be considered as canonical PAMs. 5′-NCA-3′ and 5′-NTK-3′ may serve as non-priority PAMs. At the same time, PAM of 5′-NYC-3′ is not recommended for human cells. These findings provide further insights into the application of SpRY for human genome editing.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"169 2-3 1","pages":"382 - 391"},"PeriodicalIF":5.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83673397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}