Global Ecology and Biogeography最新文献

筛选
英文 中文
Dispersal Limitation Governs Bacterial Community Assembly in the Northern Pitcher Plant (Sarracenia purpurea) at the Continental Scale 大陆尺度上的传播限制制约着北方投壶草(Sarracenia purpurea)的细菌群落组合
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-03 DOI: 10.1111/geb.13922
Grace A. Cagle, Alicia McGrew, Benjamin Baiser, Sydne Record, Nicholas J. Gotelli, Dominique Gravel, Leonora S. Bittleston, Erica B. Young, Sarah M. Gray, Zachary B. Freedman
{"title":"Dispersal Limitation Governs Bacterial Community Assembly in the Northern Pitcher Plant (Sarracenia purpurea) at the Continental Scale","authors":"Grace A. Cagle, Alicia McGrew, Benjamin Baiser, Sydne Record, Nicholas J. Gotelli, Dominique Gravel, Leonora S. Bittleston, Erica B. Young, Sarah M. Gray, Zachary B. Freedman","doi":"10.1111/geb.13922","DOIUrl":"10.1111/geb.13922","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Ecological theory suggests that dispersal limitation and selection by climatic factors influence bacterial community assembly at a continental scale, yet the conditions governing the relative importance of each process remains unclear. The carnivorous pitcher plant <i>Sarracenia purpurea</i> provides a model aquatic microecosystem to assess bacterial communities across the host plant's north–south range in North America. This study determined the relative influences of dispersal limitation and environmental selection on the assembly of bacterial communities inhabiting <i>S. purpurea</i> pitchers at the continental scale.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Eastern United States and Canada.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>2016.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Bacteria inhabiting <i>S. purpurea</i> pitchers.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Pitcher morphology, fluid, inquilines and prey were measured, and pitcher fluid underwent DNA sequencing for bacterial community analysis. Null modelling of β-diversity provided estimates for the contributions of selection and dispersal limitation to community assembly, complemented by an examination of spatial clustering of individuals. Phylogenetic and ecological associations of co-occurrence network module bacteria was determined by assessing the phylogenetic diversity and habitat preferences of member taxa.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Dispersal limitation was evident from between-site variation and spatial aggregation of individual bacterial taxa in the <i>S. purpurea</i> pitcher system. Selection pressure was weak across the geographic range, yet network module analysis indicated environmental selection within subgroups. A group of aquatic bacteria held traits under selection in warmer, wetter climates, and midge abundance was associated with selection for traits held by a group of saprotrophs. Processes that increased pitcher fluid volume weakened selection in one module, possibly by supporting greater bacterial dispersal.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Dispersal limitation governed bacterial community assembly in <i>S. purpurea</i> pitchers at a continental scale (74% of be","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Border Interceptions Reveal Variable Bridgehead Use in the Global Dispersal of Insects 边境拦截揭示了昆虫全球传播过程中桥头堡的不同使用情况
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-01 DOI: 10.1111/geb.13924
Thom Worm, Ariel Saffer, Yu Takeuchi, Chelsey Walden-Schreiner, Chris Jones, Ross Meentemeyer
{"title":"Border Interceptions Reveal Variable Bridgehead Use in the Global Dispersal of Insects","authors":"Thom Worm, Ariel Saffer, Yu Takeuchi, Chelsey Walden-Schreiner, Chris Jones, Ross Meentemeyer","doi":"10.1111/geb.13924","DOIUrl":"10.1111/geb.13924","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The global, human-mediated dispersal of invasive insects is a major driver of ecosystem change, biodiversity loss, crop damage and other effects. Trade flows and invasive species propagule pressure are correlated, and their relationship is essential for predicting and managing future invasions. Invaders do not disperse exclusively from the species' native range. Instead, the bridgehead effect, where established, non-native populations act as secondary sources of propagule, is recognised as a major driver of global invasion. The resulting pattern of global spread arises from a mixture of global interactions between invasive species, their vectors and, their invaded ranges, which has yet to be fully characterised.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1997–2020.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Insects.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We analysed 319,283 border interception records of 514 insect species from a broad range of taxa from four national-level phytosanitary organisations. We classified interceptions as coming from species native range or from bridgehead countries and examined taxonomic autocorrelation of global movement patterns between species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>While 65% of interceptions originated from bridgehead countries, highlighting the importance of the bridgehead effect across taxa, patterns among individual species were highly variable and taxonomically correlated. Forty per cent of species originated almost exclusively from their native range, 28% almost exclusively from their non-native range and 32% from a mix of source locations. These patterns of global dispersal were geographically widespread, temporally consistent, and taxonomically correlated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Dispersal exclusively from bridgeheads represents an unrecognised pattern of global insect movement; these patterns emphasise the importance of the bridgehead effect and suggest that bridgeheads provide unique local conditions that allow invaders to proliferate differently than in their native range. We connect these patterns of global dispersal to the conditions during ","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13924","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenology Across Scales: An Intercontinental Analysis of Leaf-Out Dates in Temperate Deciduous Tree Communities 跨尺度的物候学:温带落叶树群落凋落日期的洲际分析
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-10-01 DOI: 10.1111/geb.13910
Nicolas Delpierre, Suzon Garnier, Hugo Treuil-Dussouet, Koen Hufkens, Jianhong Lin, Colin Beier, Michael Bell, Daniel Berveiller, Matthias Cuntz, Giulio Curioni, Kyla Dahlin, Sander O. Denham, Ankur R. Desai, Jean-Christophe Domec, Kris M. Hart, Andreas Ibrom, Emilie Joetzjer, John King, Anne Klosterhalfen, Franziska Koebsch, Patrick McHale, Alexandre Morfin, J. William Munger, Asko Noormets, Kim Pilegaard, Felix Pohl, Corinna Rebmann, Andrew D. Richardson, David Rothstein, Mark D. Schwartz, Matthew Wilkinson, Kamel Soudani
{"title":"Phenology Across Scales: An Intercontinental Analysis of Leaf-Out Dates in Temperate Deciduous Tree Communities","authors":"Nicolas Delpierre, Suzon Garnier, Hugo Treuil-Dussouet, Koen Hufkens, Jianhong Lin, Colin Beier, Michael Bell, Daniel Berveiller, Matthias Cuntz, Giulio Curioni, Kyla Dahlin, Sander O. Denham, Ankur R. Desai, Jean-Christophe Domec, Kris M. Hart, Andreas Ibrom, Emilie Joetzjer, John King, Anne Klosterhalfen, Franziska Koebsch, Patrick McHale, Alexandre Morfin, J. William Munger, Asko Noormets, Kim Pilegaard, Felix Pohl, Corinna Rebmann, Andrew D. Richardson, David Rothstein, Mark D. Schwartz, Matthew Wilkinson, Kamel Soudani","doi":"10.1111/geb.13910","DOIUrl":"10.1111/geb.13910","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Eastern North America (ENA) and Europe (EUR).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>2009–2022.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Temperate deciduous forest trees.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We developed an approach to quantify ICVLo through the analysis of RGB images taken from phenological cameras. We related ICVLo to species richness, phylogenetic diversity and environmental conditions. We quantified the intra-community variability of the amount of radiation received and of exposure to late frost.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Leaf-out occurred over a longer time interval in ENA than in EUR. The sensitivity of leaf-out to temperature was identical in both regions (−3.4 days per °C). The distributions of ICVLo were similar in EUR and ENA forests, despite the latter being more species-rich and phylogenetically diverse. In both regions, cooler conditions and an earlier occurrence of leaf-out resulted in higher ICVLo. ICVLo resulted in ca. 8% difference of radiation received from leaf-out to September among individual trees. Forest communities in ENA had shorter safety margins as regards the exposure to late frosts, and were actually more frequently exposed to late frosts.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>We conducted the first intercontinental analysis of the variability of leaf-out at the scale of tree communities. North American and European forests showed similar ICVLo, in spite of their differences in terms of species richness and phylogenetic diversity, highlighting the relevance of environmental controls on ICVLo. We quantified two ecological implications of ICVLo (difference in terms of radiation received and exposure to late frost), which should be explored in the context of ongoing climate change, which affects trees differently according to their phenological niche","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13910","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Erosion of Seasonality in Avian Communities 鸟类群落中季节性的侵蚀
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-30 DOI: 10.1111/geb.13919
Shannon R. Curley, José R. Ramírez-Garofalo, Marlen Acosta Alamo, Lisa L. Manne, Julie L. Lockwood, Richard R. Veit
{"title":"The Erosion of Seasonality in Avian Communities","authors":"Shannon R. Curley,&nbsp;José R. Ramírez-Garofalo,&nbsp;Marlen Acosta Alamo,&nbsp;Lisa L. Manne,&nbsp;Julie L. Lockwood,&nbsp;Richard R. Veit","doi":"10.1111/geb.13919","DOIUrl":"10.1111/geb.13919","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Seasonality governs species composition at a given place and time. However, the effects of climate and land-use change can vary by season, altering species composition. These changes can lead to a loss of distinct seasonal community composition, representing a novel form of biotic homogenisation. We ask if breeding and winter bird communities are becoming more similar over time. If so, is homogenisation occurring more rapidly in winter than in the breeding season, and has the presence of individual species changed between seasons?</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Northeastern United States.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1989–2019.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Two hundred thirty-eight bird species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We use data from The National Audubon Society's Christmas Bird Count and the North American Breeding Bird Survey to test if winter and breeding bird communities have become more similar (homogenised). We evaluate this change using the Sørensen dissimilarity index, and its components of turnover (species replacement) and nestedness (a subset of a more species rich community) and describe the mechanism in which the seasonal winter and breeding bird communities are changing.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that winter and breeding bird communities are homogenising, driven by significant decrease in turnover and a marginal decrease nestedness. When viewing breeding and wintering communities separately, we observe different trends. Breeding communities are becoming more unique with decreasing turnover and nestedness. Winter communities are becoming more similar to each other, with decreasing turnover and nestedness. More breeding species are declining and species that are typically found in the winter and year-round residents are the main contributors to the homogenisation between seasons.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>We show for the first time homogenisation between winter and breeding bird communities over time across the northeastern United States. This insight into how individual species are faring between seasons, and how they impact community structure, can be used when implementing conservation measures for maintaining ecological functioning and integrity.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Latitudinal Cline in the Taxonomic Structure of Eelgrass Epifaunal Communities is Associated With Plant Genetic Diversity 鳗草表生动物群落分类结构的纬度界线与植物遗传多样性有关
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-30 DOI: 10.1111/geb.13918
Collin P. Gross, J. Emmett Duffy, Kevin A. Hovel, Pamela L. Reynolds, Christoffer Boström, Katharyn E. Boyer, Mathieu Cusson, Johan Eklöf, Aschwin H. Engelen, Britas Klemens Eriksson, F. Joel Fodrie, John N. Griffin, Clara M. Hereu, Masakazu Hori, A. Randall Hughes, Mikhail V. Ivanov, Pablo Jorgensen, Melissa R. Kardish, Claudia Kruschel, Kun-Seop Lee, Jonathan Lefcheck, Karen McGlathery, Per-Olav Moksnes, Masahiro Nakaoka, Mary I. O'Connor, Nessa E. O'Connor, Jeanine L. Olsen, Robert J. Orth, Bradley J. Peterson, Henning Reiss, Francesca Rossi, Jennifer Ruesink, Erik E. Sotka, Jonas Thormar, Fiona Tomas, Richard Unsworth, Erin P. Voigt, Matthew A. Whalen, Shelby L. Ziegler, John J. Stachowicz
{"title":"A Latitudinal Cline in the Taxonomic Structure of Eelgrass Epifaunal Communities is Associated With Plant Genetic Diversity","authors":"Collin P. Gross,&nbsp;J. Emmett Duffy,&nbsp;Kevin A. Hovel,&nbsp;Pamela L. Reynolds,&nbsp;Christoffer Boström,&nbsp;Katharyn E. Boyer,&nbsp;Mathieu Cusson,&nbsp;Johan Eklöf,&nbsp;Aschwin H. Engelen,&nbsp;Britas Klemens Eriksson,&nbsp;F. Joel Fodrie,&nbsp;John N. Griffin,&nbsp;Clara M. Hereu,&nbsp;Masakazu Hori,&nbsp;A. Randall Hughes,&nbsp;Mikhail V. Ivanov,&nbsp;Pablo Jorgensen,&nbsp;Melissa R. Kardish,&nbsp;Claudia Kruschel,&nbsp;Kun-Seop Lee,&nbsp;Jonathan Lefcheck,&nbsp;Karen McGlathery,&nbsp;Per-Olav Moksnes,&nbsp;Masahiro Nakaoka,&nbsp;Mary I. O'Connor,&nbsp;Nessa E. O'Connor,&nbsp;Jeanine L. Olsen,&nbsp;Robert J. Orth,&nbsp;Bradley J. Peterson,&nbsp;Henning Reiss,&nbsp;Francesca Rossi,&nbsp;Jennifer Ruesink,&nbsp;Erik E. Sotka,&nbsp;Jonas Thormar,&nbsp;Fiona Tomas,&nbsp;Richard Unsworth,&nbsp;Erin P. Voigt,&nbsp;Matthew A. Whalen,&nbsp;Shelby L. Ziegler,&nbsp;John J. Stachowicz","doi":"10.1111/geb.13918","DOIUrl":"10.1111/geb.13918","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Biogenic structural complexity increases mobile animal richness and abundance at local, regional and global scales, yet animal taxa vary in their response to complexity. When these taxa also vary functionally, habitat structures favouring certain taxa may have consequences for ecosystem function. We characterised global patterns of epifaunal invertebrates in eelgrass (<i>Zostera marina</i>) beds that varied in structural and genetic composition.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>North America, Europe and Asia.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>2014.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Peracarid crustaceans and gastropod molluscs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We sampled epifaunal invertebrate communities in 49 eelgrass beds across 37° latitude in two ocean basins concurrently with measurements of eelgrass genetic diversity, structural complexity and other abiotic and biotic environmental variables. We examined how species richness, abundance and community composition varied with latitude and environmental predictors using a random forest approach. We also examined how functional trait composition varied along with community structure.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Total species richness decreased with latitude, but this was accompanied by a taxonomic shift in dominance from peracarid crustaceans to gastropods, which exhibited different sets of functional traits. Greater eelgrass genetic diversity was strongly correlated with both richness and abundance of peracarids, but less so for gastropods.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our results add to a growing body of literature that suggests genetic variation in plant traits influences their associated faunal assemblages via habitat structure. Because peracarids and gastropods exhibited distinct functional traits, our results suggest a tentative indirect link between broad-scale variation in plant genetic diversity and ecosystem function.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree Germination Sensitivity to Increasing Temperatures: A Global Meta-Analysis Across Biomes, Species and Populations 树木发芽对温度升高的敏感性:跨生物群落、物种和种群的全球元分析
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-30 DOI: 10.1111/geb.13921
Eduardo Vicente, Marta Benito Garzón
{"title":"Tree Germination Sensitivity to Increasing Temperatures: A Global Meta-Analysis Across Biomes, Species and Populations","authors":"Eduardo Vicente,&nbsp;Marta Benito Garzón","doi":"10.1111/geb.13921","DOIUrl":"10.1111/geb.13921","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Climate change is altering forest communities at an unprecedented pace. Current knowledge on trees' responses to climate shifts is based mostly on adults. Yet, germination traits and intraspecific variation can notably modulate species niches. This paper provides a quantitative review about warming effects on tree species' germination, the role of population effects and its implications under future climate.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global; covering boreal, temperate, Mediterranean and tropical–subtropical biomes.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;1996–2024.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Tree species.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We reviewed 50 papers addressing 63 species and 250 populations. Then, we conducted a meta-analysis to assess warming effects on germination percentage and time, and how germination is modulated by climate at seed origin. We further evaluated populations' adaptation to local temperature on 27 species. Finally, we estimated population-based germination niches in eight of these species under current climate conditions and a 2080 climate scenario (SSP5-8.5).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Warming induced more consistent shifts in germination time than in percentage across biomes, hastening germination. Temperature at seed origin shaped responses to warming in boreal and temperate species. In Mediterranean and tropical–subtropical species, different responses were associated with variation in precipitation-related variables. Local adaptation was more frequent in species from the tropics, while adaptation lags towards warmer-than-today conditions observed in the other biomes. Simulation of germination niches yielded slight although extensive germination reductions in tropical–subtropical species under future climate, whereas the temperate and boreal ones showed overall increases.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Population-level adjustments are key moderators of germination percentage and phenology response to warming. Their roles vary depending on the prevailing climate in each biome. Temperature at seed origin is an important factor modulating temperate and boreal species' res","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Global Comparison of Stream Diatom Beta Diversity on Islands Versus Continents Across Scales 岛屿与大陆不同尺度溪流硅藻 Beta 多样性的全球比较
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-24 DOI: 10.1111/geb.13916
Ramiro Martín-Devasa, Aurélien Jamoneau, Sophia I. Passy, Juliette Tison-Rosebery, Saúl Blanco, Alex Borrini, Sébastien Boutry, William R. Budnick, Marco Cantonati, Adelaide Clode Valente, Cristina Delgado, Gerald Dörflinger, Vítor Gonçalves, Jenny Jyrkänkallio-Mikkola, Bryan Kennedy, Julien Marquié, Helena Marques, Athina Papatheodoulou, Virpi Pajunen, Javier Pérez-Burillo, Pedro Miguel Raposeiro, Catarina Ritter, António Serafim, Anette Teittinen, Bart Van de Vijver, Jianjun Wang, Janne Soininen
{"title":"A Global Comparison of Stream Diatom Beta Diversity on Islands Versus Continents Across Scales","authors":"Ramiro Martín-Devasa,&nbsp;Aurélien Jamoneau,&nbsp;Sophia I. Passy,&nbsp;Juliette Tison-Rosebery,&nbsp;Saúl Blanco,&nbsp;Alex Borrini,&nbsp;Sébastien Boutry,&nbsp;William R. Budnick,&nbsp;Marco Cantonati,&nbsp;Adelaide Clode Valente,&nbsp;Cristina Delgado,&nbsp;Gerald Dörflinger,&nbsp;Vítor Gonçalves,&nbsp;Jenny Jyrkänkallio-Mikkola,&nbsp;Bryan Kennedy,&nbsp;Julien Marquié,&nbsp;Helena Marques,&nbsp;Athina Papatheodoulou,&nbsp;Virpi Pajunen,&nbsp;Javier Pérez-Burillo,&nbsp;Pedro Miguel Raposeiro,&nbsp;Catarina Ritter,&nbsp;António Serafim,&nbsp;Anette Teittinen,&nbsp;Bart Van de Vijver,&nbsp;Jianjun Wang,&nbsp;Janne Soininen","doi":"10.1111/geb.13916","DOIUrl":"10.1111/geb.13916","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;To evaluate the patterns of stream diatom beta diversity in islands versus continents across scales, to relate community similarities with spatial and environmental distances and to investigate the role of island characteristics in shaping insular diatom beta diversity.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Africa, America, Europe and the Pacific.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Present.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Stream diatoms.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We compared diatom beta diversity between islands and continents at large scales (within biogeographic regions) in two study regions (America and Europe) and at small scales (within islands/equivalent areas in continents) in three regions (Africa, America and Europe) partitioning beta diversity into turnover and nestedness components. We used a partial Mantel test and distance–decay curves to assess how diatom beta diversity on islands and continents is affected by spatial and environmental distances. Finally, using island data from all four regions, we evaluated the relationship between island beta diversity and island latitude, area, age and isolation using linear models.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;At large scales, mean dissimilarities were higher on islands than in continents in Europe but lower in America. At smaller scales, the differences varied mostly depending on island isolation. Beta diversity was mainly caused by species turnover. Partial Mantel test and distance–decay curves revealed that spatial and environmental distances shaped diatom beta diversity at large, but not at small scales. Moreover, diatom beta diversity on islands was affected by island latitude, age and isolation, but not by island area.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Diatom beta diversity on islands versus continents and its responses to spatial and environmental factors are scale and region dependent. Incomplete colonisation, evolutionary processes and environmental filtering likely contribute to insular beta diversity, which further varies with island latitude, age and isolation. This study sheds new light on beta diversity of microorganisms on islands and suggests t","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Biotic and Abiotic Drivers of Body Size Disparity in Communities of Non-Volant Terrestrial Mammals 调查非暴虐陆生哺乳动物群落中体型差异的生物和非生物驱动因素
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-23 DOI: 10.1111/geb.13913
William Gearty, Lawrence H. Uricchio, S. Kathleen Lyons
{"title":"Investigating the Biotic and Abiotic Drivers of Body Size Disparity in Communities of Non-Volant Terrestrial Mammals","authors":"William Gearty,&nbsp;Lawrence H. Uricchio,&nbsp;S. Kathleen Lyons","doi":"10.1111/geb.13913","DOIUrl":"10.1111/geb.13913","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The species that compose local communities possess unique sets of functional and ecological traits that can be used as indicators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non-volant (i.e., non-flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Present.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Non-volant terrestrial mammals.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed body size dispersion of these communities and its deviation from a null model.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Dispersion for these communities is significantly greater than expected in 54% of communities and significantly less than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual temperature collectively explain &gt; 50% of the variation in observed dispersion, whereas continent, the number of very large species, and precipitation collectively explain &gt; 30% of the deviation from the null model.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Climate and elevation have minimal predictive power, suggesting that biotic factors may be more important for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due to it capturing the combined effects of climate, size-selective human-induced extinctions and more. Overall, our results are consistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources, within-community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on ot","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergent Properties and Robustness of Species–Habitat Networks for Global Terrestrial Vertebrates 全球陆生脊椎动物物种-生境网络的新兴特性和稳健性
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-11 DOI: 10.1111/geb.13912
Xiyang Hao, Martin Jung, Yiwen Zhang, Chuan Yan
{"title":"Emergent Properties and Robustness of Species–Habitat Networks for Global Terrestrial Vertebrates","authors":"Xiyang Hao,&nbsp;Martin Jung,&nbsp;Yiwen Zhang,&nbsp;Chuan Yan","doi":"10.1111/geb.13912","DOIUrl":"10.1111/geb.13912","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Habitat loss is the dominant cause of biodiversity decline around the world, yet the complexity and stability of terrestrial assemblages related to suitable habitats have been almost unknown on a global scale.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>Contemporary.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Mammalia, Aves, Reptilia, Amphibia.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We constructed gridded maps of species–habitat networks of terrestrial vertebrates based on global species distributions and a recently developed habitat type dataset. Then, we investigated the biogeographic patterns of emergent network structures and analysed network robustness to habitat loss by simulating habitat removals on a global scale.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that, compared with reptiles and amphibians, the species–habitat networks of mammals and birds were characterised by higher habitat diversity, connectance and modularity. All four taxonomical groups have high robustness globally, but after adjusting for species and habitat diversity, we found a variation of surplus and deficiency of network structures and robustness. Temperature and precipitation contributed most to relative network robustness globally, whereas geographical and human population factors played important roles in scattered regions on all continents.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Overall, we provide novel insights into the biogeographic patterns of species–habitat connections through a network approach, which can help to identify gaps for reestablishing species–habitat links to improve conservation outcomes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogeographical Variation in Termite Distributions Alters Global Deadwood Decay 白蚁分布的生物地理差异改变了全球枯木腐烂情况
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2024-09-11 DOI: 10.1111/geb.13915
Stephanie J. Law, Habacuc Flores-Moreno, Catherine L. Parr, Stephen Adu-Bredu, Katherine Bunney, William K. Cornwell, Fidèle Evouna Ondo, Jeff R. Powell, Gabriel W. Quansah, Mark P. Robertson, Amy E. Zanne, Paul Eggleton
{"title":"Biogeographical Variation in Termite Distributions Alters Global Deadwood Decay","authors":"Stephanie J. Law,&nbsp;Habacuc Flores-Moreno,&nbsp;Catherine L. Parr,&nbsp;Stephen Adu-Bredu,&nbsp;Katherine Bunney,&nbsp;William K. Cornwell,&nbsp;Fidèle Evouna Ondo,&nbsp;Jeff R. Powell,&nbsp;Gabriel W. Quansah,&nbsp;Mark P. Robertson,&nbsp;Amy E. Zanne,&nbsp;Paul Eggleton","doi":"10.1111/geb.13915","DOIUrl":"10.1111/geb.13915","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Termites are a crucial group of macroinvertebrates regulating rates of deadwood decomposition across tropical and subtropical regions. When examining global patterns of deadwood decay, termites are treated as a homogenous group. There exist key biogeographical differences in termite distribution. One such clear distinction is the distribution of fungus-growing termites (FGT, subfamily Macrotermitinae). Considering that climate will have shaped termite distribution and ecosystem processes, we evaluate the roles of termite distribution (presence of FGT) and climate (aridity) on global patterns in deadwood decay.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Between 46° N-43° S and 175° E-85° W.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Present (between 2016 and 2021).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Termites (Blattodea: Termitoidae).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We add salient data to an existing global dataset on deadwood decomposition, including new data from five existing sites and seven additional African sites. We analyse a dataset spanning six continents, 16 countries and 102 experimental sites. Firstly, we evaluate climatic differences (mean annual temperature, mean annual precipitation and mean annual aridity) between sites with and without FGT. Secondly, using aridity as a single comparative climate metric between sites that accounts for temperature and precipitation differences, we examine the interaction between FGT and aridity on global patterns of termite deadwood discovery and decay through multivariate logistic and linear regressions.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Termite-driven decay and wood discovery increased with aridity; however, responses differed between FGT and NFGT sites. Wood discovery increased with aridity in FGT sites only, suggesting a greater role of FGT to deadwood decay in arid environments. On average, both termite discovery and decay of deadwood were approximately four times greater in regions with FGT compared with regions without FGT.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Termite discovery and decay of deadwood is climate dependent, and higher decay may be through greater discovery of deadwood in FG","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信