Brian Schlattmann, Ken Kiyono, Damian G Kelty-Stephen, Madhur Mangalam
{"title":"Angular distribution of fractal temporal correlations supports adaptive responses to wobble board instability.","authors":"Brian Schlattmann, Ken Kiyono, Damian G Kelty-Stephen, Madhur Mangalam","doi":"10.1098/rsif.2024.0664","DOIUrl":"10.1098/rsif.2024.0664","url":null,"abstract":"<p><p>Contemporary dynamical models of human postural control propose an intermittent controller regulating the postural centre of pressure (CoP) about a stable saddle-shaped manifold along anatomical anteroposterior (AP) and mediolateral (ML) axes, releasing CoP in an outwards spiral when inactive. Experimental manipulations can evoke this saddle-type topology in fractal temporal correlations along the AP axis and reducing correlations along the ML axis. However, true effects of task demands may often manifest within angular space between anatomical AP and ML axes-a space not typically modelled explicitly. We tested how instability and attentional load influence postural control across the full angular range of fractal variability along the two-dimensional (2D) support surface. Forty-eight healthy young adults performed a suprapostural Trail Making Test (TMT) while standing on a wobble board, inducing continuous perturbations along the ML axis. Stable, quiet standing exhibited classic saddle-like topology, with stronger fractal temporal correlations in CoP displacements along AP axes. The attentional demand of the TMT did not affect angular variation or strength of fractal temporal correlations across the 2Dsupport surface. However, maintaining upright balance on the wobble board reshaped and reoriented the angular distribution of fractal temporal correlations, accentuating saddle-like angular variation and rotating the strongest fractal temporal correlations predominantly along the ML axis. Stabilizing posture in the face of wobble board instability prompted the saddle-type angular distribution of fractal temporal correlations. These findings challenge the traditional dependence of postural control theories exclusively on external force-plate axes and underscore the significance of multifractality in defining control parameters that govern postural stability across the full angular range of the 2D support surface.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240664"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Koji Noshita, Tomomi Nakagawa, Akihiro Kaneda, Kohei Tamura, Hisashi Nakao
{"title":"The cultural transmission of Ongagawa style pottery in the prehistoric Japan: quantitative analysis on three-dimensional data of archaeological pottery in the early Yayoi period.","authors":"Koji Noshita, Tomomi Nakagawa, Akihiro Kaneda, Kohei Tamura, Hisashi Nakao","doi":"10.1098/rsif.2024.0889","DOIUrl":"10.1098/rsif.2024.0889","url":null,"abstract":"<p><p>The present study analysed archaeological pottery in the early Yayoi period of the prehistoric Japanese archipelago, i.e. Ongagawa style pottery, which has been traditionally regarded as an indicator of the spread of rice farming in the archipelago. To this end, we quantified the two- and three-dimensional data of outlines and surfaces of the pottery, based on elliptic Fourier and spherical harmonics analyses, respectively. The results show morphological variation is spatially and temporally structured, consistent with an archaeological view that the pottery style spread via two routes (the Japan Sea route and Setouchi route) with the potential of more complex interactions between the transmission routes. The present study exemplifies a useful quantitative method to theorize cultural evolutionary trajectories of archaeological remains.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240889"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xun Fu, Bohao Zhang, Ceri J Weber, Kimberly L Cooper, Ram Vasudevan, Talia Y Moore
{"title":"Jointed tails enhance control of three-dimensional body rotation.","authors":"Xun Fu, Bohao Zhang, Ceri J Weber, Kimberly L Cooper, Ram Vasudevan, Talia Y Moore","doi":"10.1098/rsif.2024.0355","DOIUrl":"10.1098/rsif.2024.0355","url":null,"abstract":"<p><p>Tails used as inertial appendages induce body rotations of animals and robots-a phenomenon that is governed largely by the ratio of the body and tail moments of inertia. However, vertebrate tails have more degrees of freedom (e.g. number of joints and rotational axes) than most current theoretical models and robotic tails. To understand how morphology affects inertial appendage function, we developed an optimization-based approach that finds the maximally effective tail trajectory and measures error from a target trajectory. For tails of equal total length and mass, increasing the number of equal-length joints increased the complexity of maximally effective tail motions. When we optimized the relative lengths of tail bones while keeping the total tail length, mass and number of joints the same, this optimization-based approach found that the lengths matched the pattern found in the tail bones of mammals specialized for inertial manoeuvring. In both experiments, adding joints enhanced the performance of the inertial appendage, but with diminishing returns, largely due to the total control effort constraint. This optimization-based simulation can compare the maximum performance of diverse inertial appendages that dynamically vary in a moment of inertia in three-dimensional space, predict inertial capabilities from skeletal data and inform the design of robotic inertial appendages.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240355"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nia Verdon, Ofelia Popescu, Simon Titmuss, Rosalind J Allen
{"title":"Habitat fragmentation enhances microbial collective defence.","authors":"Nia Verdon, Ofelia Popescu, Simon Titmuss, Rosalind J Allen","doi":"10.1098/rsif.2024.0611","DOIUrl":"10.1098/rsif.2024.0611","url":null,"abstract":"<p><p>Microbes often inhabit complex, spatially partitioned environments such as host tissue or soil, but the effects of habitat fragmentation on microbial ecology and infection dynamics are poorly understood. Here, we investigate how habitat fragmentation impacts a prevalent microbial collective defence mechanism: enzymatic degradation of an environmental toxin. Using a theoretical model, we predict that habitat fragmentation can strongly enhance the collective benefits of enzymatic toxin degradation. For the example of [Formula: see text]-lactamase-producing bacteria that mount a collective defence by degrading a [Formula: see text]-lactam antibiotic, we find that realistic levels of habitat fragmentation can allow a population to survive antibiotic doses that greatly exceed those required to kill a non-fragmented population. This 'habitat-fragmentation rescue' is a stochastic effect that originates from variation in bacterial density among different subpopulations and demographic noise. We also study the contrasting case of collective enzymatic foraging, where enzyme activity releases nutrients from the environment; here we find that increasing habitat fragmentation decreases the lag time for population growth but does not change the ecological outcome. Taken together, this work predicts that stochastic effects arising from habitat fragmentation can greatly enhance the effectiveness of microbial collective defence via enzymatic toxin degradation.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240611"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local postural changes elicit extensive and diverse skin stretch around joints, on the trunk and the face.","authors":"Mia Rupani, Luke D Cleland, Hannes P Saal","doi":"10.1098/rsif.2024.0794","DOIUrl":"10.1098/rsif.2024.0794","url":null,"abstract":"<p><p>Skin stretch, induced by bodily movements, offers a potential source of information about the conformation of the body that can be transmitted to the brain via stretch-sensitive mechanoreceptive neurons. While previous studies have primarily focused on skin stretch directly at joints, here we investigate the extent and complexity of natural skin stretch across various body regions, including the face and trunk. We used a quad-camera set-up to image large ink-based speckle patterns stamped on participants' skin and calculated the resulting stretch patterns on a millimetre scale during a range of natural poses. We observed that skin stretch associated with joint movement extends far beyond the joint itself, with knee flexion inducing stretch on the upper thigh. Large and uniform stretch patterns were found across the trunk, covering considerable portions of the skin. The face exhibited highly complex and non-uniform stretch patterns, potentially contributing to our capacity to control fine facial movements in the absence of traditional proprioceptors. Importantly, all regions demonstrated skin stretch in excess of mechanoreceptive thresholds, suggesting that behaviourally relevant skin stretch can occur anywhere on the body. These signals might provide the brain with valuable information about body state and conformation, potentially supplementing or even surpassing the capabilities of traditional proprioception.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240794"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model-guided gene circuit design for engineering genetically stable cell populations in diverse applications.","authors":"Kirill Sechkar, Harrison Steel","doi":"10.1098/rsif.2024.0602","DOIUrl":"10.1098/rsif.2024.0602","url":null,"abstract":"<p><p>Maintaining engineered cell populations' genetic stability is a key challenge in synthetic biology. Synthetic genetic constructs compete with a host cell's native genes for expression resources, burdening the cell and impairing its growth. This creates a selective pressure favouring mutations which alleviate this growth defect by removing synthetic gene expression. Non-functional mutants thus spread in cell populations, eventually making them lose engineered functions. Past work has attempted to limit mutation spread by coupling synthetic gene expression to survival. However, these approaches are highly context-dependent and must be tailor-made for each particular synthetic gene circuit to be retained. By contrast, we develop and analyse a biomolecular controller which depresses mutant cell growth independently of the mutated synthetic gene's identity. Modelling shows how our design can be deployed alongside various synthetic circuits without any re-engineering of its genetic components, outperforming extant gene-specific mutation spread mitigation strategies. Our controller's performance is evaluated using a novel simulation approach which leverages resource-aware cell modelling to directly link a circuit's design parameters to its population-level behaviour. Our design's adaptability promises to mitigate mutation spread in an expanded range of applications, while our analyses provide a blueprint for using resource-aware cell models in circuit design.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240602"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernd F Steklis, Kaden L Rupert, Todd A Blackledge
{"title":"Water has different effects on adhesive strength during placement versus loading of spider silk attachment discs.","authors":"Bernd F Steklis, Kaden L Rupert, Todd A Blackledge","doi":"10.1098/rsif.2024.0650","DOIUrl":"10.1098/rsif.2024.0650","url":null,"abstract":"<p><p>Spiders use piriform silk attachment discs to adhere threads during web construction and to secure safety lines. Water could degrade attachment disc adhesion by either interfering with placement of the discs or later reducing adhesion during loading. We tested the effect of water on the adhesion of attachment discs for the spider <i>Latrodectus hesperus</i>, which spins webs in mostly dry environments. We compared adhesion for discs spun on wet versus dry glass that were subsequently loaded in either wet or dry conditions. Attachment discs placed on wet glass showed similar adhesion to discs placed on dry glass. However, water significantly decreased both peak force of adhesion and work of adhesion when loading occurred under wet conditions, regardless of initial placement conditions. Furthermore, failure mode shifted from rupture of draglines in dry loading conditions to adhesive failure of discs in wet loading conditions. Our results show the importance of considering both the conditions in which biological structures are produced and those in which the structures perform as potentially independent factors for performance. Our results also suggest that adhesion in wet conditions can challenge some spiders, potentially leading to specialization of attachment discs for riparian or aquatic species.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240650"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Competition effects regulating the composition of the microRNA pool.","authors":"Sofia B Raak, Jonathan G Hanley, Cian O'Donnell","doi":"10.1098/rsif.2024.0870","DOIUrl":"10.1098/rsif.2024.0870","url":null,"abstract":"<p><p>MicroRNAS (miRNAs) are short non-coding RNAs that can repress mRNA translation to regulate protein synthesis. During their maturation, multiple types of pre-miRNAs compete for a shared pool of the enzyme Dicer. It is unknown how this competition for a shared resource influences the relative expression of mature miRNAs. We study this process in a computational model of pre-miRNA maturation, fitted to <i>in vitro Drosophila</i> S2 cell data. We find that those pre-miRNAs that efficiently interact with Dicer outcompete other pre-miRNAs, when Dicer is scarce. To test our model predictions, we re-analysed previously published <i>ex vivo</i> mouse striatum data with reduced <i>Dicer1</i> expression. We calculated a proxy measure for pre-miRNA affinity to TRBP (a protein that loads pre-miRNAs to Dicer). This measures well-predicted mature miRNA levels in the data, validating our assumptions. We used this as a basis to test the the model's predictions through further analysis of the data. We found that pre-miRNAs with strong TRBP association are over-represented in competition conditions, consistent with the modelling. Finally using further simulations, we discovered that pre-miRNAs with low maturation rates can affect the mature miRNA pool via competition among pre-miRNAs. Overall, this work presents evidence of pre-miRNA competition regulating the composition of mature miRNAs.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240870"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaozhou Fan, Alberto Bortoni, Siyang Hao, Sharon Swartz, Kenneth Breuer
{"title":"Upstroke wing clapping in bats and bat-inspired robots offers efficient lift generation.","authors":"Xiaozhou Fan, Alberto Bortoni, Siyang Hao, Sharon Swartz, Kenneth Breuer","doi":"10.1098/rsif.2024.0590","DOIUrl":"10.1098/rsif.2024.0590","url":null,"abstract":"<p><p>Wing articulation is critical for the efficient flight of bird- and bat-sized animals. Inspired by the flight of <i>Cynopterus brachyotis</i>, the lesser short-nosed fruit bat, we built a two-degree-of-freedom flapping wing platform with variable wing folding capability. In the late upstroke, the wings 'clap' and produce an air jet that significantly increases lift production, with a positive peak matched to that produced in the downstroke. Though ventral clapping has been observed in avian flight, the potential aerodynamic benefit of this behaviour is yet to be rigorously assessed. We used multiple approaches-quasi-steady modelling, direct force/power measurement and particle image velocimetry (PIV) experiments in a wind tunnel-to understand critical aspects of lift and power variation in relation to wing folding magnitude over Strouhal numbers at <i>St</i> = 0.2-0.4. While lift increases monotonically with folding amplitude in that range, power economy (ratio of lift/power) is more nuanced. At <i>St</i> = 0.2-0.3, it increases with wing folding amplitude monotonically. At <i>St</i> = 0.3-0.4, it features two maxima-one at medium folding amplitude (approx. 30°) and the other at maximum folding. These findings illuminate two strategies available to flapping wing animals and robots-symmetry-breaking lift augmentation and appendage-based jet propulsion.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240590"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reciprocating thermochemical mediator of pre-biotic polymer decomposition on mineral surfaces.","authors":"Rowena Ball, John Brindley","doi":"10.1098/rsif.2024.0492","DOIUrl":"10.1098/rsif.2024.0492","url":null,"abstract":"<p><p>A continuing frustration for origin of life scientists is that abiotic and, by extension, pre-biotic attempts to develop self-sustaining, evolving molecular systems tend to produce more dead-end substances than macromolecular products with the necessary potential for biostructure and function - the so-called 'tar problem'. Nevertheless primordial life somehow emerged despite that presumed handicap. A resolution of this problem is important in emergence-of-life science because it would provide valuable guidance in choosing subsequent paths of investigation, such as identifying pre-biotic patterns on Mars. To study the problem we set up a simple non-equilibrium flow dynamical model for the coupled temperature and mass dynamics of the decomposition of a polymeric carbohydrate adsorbed on a mineral surface, with incident stochastic thermal fluctuations. Results show that the model system behaves as a reciprocating thermochemical oscillator. The output fluctuation distribution is bimodal, with a right-weighted component that guarantees a bias towards detachment and desorption of monomeric species such as ribose, even while tar is formed concomitantly. This fluctuating thermochemical reciprocator may ensure that non-performing polymers can be fractionated into a refractory carbon reservoir and active monomers which may be reincorporated into better-performing polymers with less vulnerability towards adsorptive tarring.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240492"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}