{"title":"Metachronal rowing provides robust propulsive performance across four orders of magnitude variation in Reynolds number.","authors":"Mitchell P Ford, Arvind Santhanakrishnan","doi":"10.1098/rsif.2024.0822","DOIUrl":null,"url":null,"abstract":"<p><p>Metachronal rowing of multiple appendages is a swimming strategy used by numerous organisms across various taxa, with body sizes ranging of the orders of [Formula: see text] to [Formula: see text] m. This corresponds to a huge variation in fluid flow regimes, characterized by paddle-scale Reynolds numbers ([Formula: see text]) ranging from the orders of [Formula: see text] (viscosity dominated) to [Formula: see text] (inertially dominated). Though the rhythmic stroking of the paddles is conserved across species and developmental stages, the hydrodynamic scalability of metachronal rowing has not been examined across this broad [Formula: see text] range. Using a self-propelled metachronal paddling robot, we examine swimming performance changes across four orders of magnitude variation in [Formula: see text] most relevant to crustaceans ([Formula: see text] to [Formula: see text]). We found that wake Strouhal number ([Formula: see text]), which characterizes momentum transfer from paddles to the wake, was unchanged for [Formula: see text] ([Formula: see text]). This is within the reported range of Strouhal numbers of various flying and swimming animals. Peak dimensionless circulation of paddle tip vortices increased linearly with stroke kinematics but was mostly unaffected by fluid viscosity. These findings show that the swimming performance of metachronal rowing is conserved across widely varying flow regimes, with dimensionless swimming speed scaling linearly with [Formula: see text] across the entire tested range.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 227","pages":"20240822"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0822","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metachronal rowing of multiple appendages is a swimming strategy used by numerous organisms across various taxa, with body sizes ranging of the orders of [Formula: see text] to [Formula: see text] m. This corresponds to a huge variation in fluid flow regimes, characterized by paddle-scale Reynolds numbers ([Formula: see text]) ranging from the orders of [Formula: see text] (viscosity dominated) to [Formula: see text] (inertially dominated). Though the rhythmic stroking of the paddles is conserved across species and developmental stages, the hydrodynamic scalability of metachronal rowing has not been examined across this broad [Formula: see text] range. Using a self-propelled metachronal paddling robot, we examine swimming performance changes across four orders of magnitude variation in [Formula: see text] most relevant to crustaceans ([Formula: see text] to [Formula: see text]). We found that wake Strouhal number ([Formula: see text]), which characterizes momentum transfer from paddles to the wake, was unchanged for [Formula: see text] ([Formula: see text]). This is within the reported range of Strouhal numbers of various flying and swimming animals. Peak dimensionless circulation of paddle tip vortices increased linearly with stroke kinematics but was mostly unaffected by fluid viscosity. These findings show that the swimming performance of metachronal rowing is conserved across widely varying flow regimes, with dimensionless swimming speed scaling linearly with [Formula: see text] across the entire tested range.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.