Geobiology最新文献

筛选
英文 中文
Redox Gradient Shapes the Chemical Composition of Peatland Microbial Communities 氧化还原梯度塑造泥炭地微生物群落的化学组成
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-10-30 DOI: 10.1111/gbi.70001
Vincent P. Milesi
{"title":"Redox Gradient Shapes the Chemical Composition of Peatland Microbial Communities","authors":"Vincent P. Milesi","doi":"10.1111/gbi.70001","DOIUrl":"10.1111/gbi.70001","url":null,"abstract":"<p>The response of soil carbon to climate change and anthropogenic forcing depends on the relationship between the physicochemical variables of the environment and microbial communities. In anoxic soils that store large amounts of organic carbon, it can be hypothesized that the low amount of catabolic energy available leads microbial organisms to minimize the energy costs of biosynthesis, which may shape the composition of microbial communities. To test this hypothesis, thermodynamic modeling was used to assess the link between redox gradients in the ombrotrophic peatland of the Marcell Experimental Forest (Minnesota, USA) and the chemical and taxonomic composition of microbial communities. The average amino acid composition of community-level proteins, called hereafter model proteins, was calculated from shotgun metagenomic sequencing. The carbon oxidation state of model proteins decreases linearly from −0.14 at 10 cm depth to −0.17 at 150 cm depth. Calculating equilibrium activities of model proteins for a wide range of chemical conditions allows identification of the redox potential of maximum chemical activity. Consistent with redox measurements across peat soils, this model Eh decreases logarithmically from an average value of 300 mV at 10 cm depth, close to the stability domain of goethite relative to Fe<sup>2+</sup>, to an average value of −200 mV at 150 cm, within the stability domain of CH<sub>4</sub> relative to CO<sub>2</sub>. The correlation identified between the taxonomic abundance and the carbon oxidation state of model proteins enables predicting the evolution of taxonomic abundance as a function of model Eh. The model taxonomic abundance is consistent with the measured gene and taxonomic abundance, which evolves from aerobic bacteria at the surface including Acidobacteria, Proteobacteria, and Verrumicrobia, to anaerobes at depth dominated by Crenarchaeota. These results indicate that the thermodynamic forcing imposed by redox gradient across peat soils shapes both the chemical and taxonomic composition of microbial communities. By providing a mechanistic understanding of the relationship between microbial community and environmental conditions, this work sheds new light on the mechanisms that govern soil microbial life and opens up prospects for predicting geochemical and microbial evolution in changing environments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Featured Cover 精选封面
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-10-29 DOI: 10.1111/gbi.70002
{"title":"Featured Cover","authors":"","doi":"10.1111/gbi.70002","DOIUrl":"https://doi.org/10.1111/gbi.70002","url":null,"abstract":"<p><b>Cover</b></p><p>The cover image is based on the Article <i>A Biofilm Channel Origin for Vermiform Microstructure in Carbonate Microbialites</i> by Yadira Ibarra et al., https://doi.org/10.1111/gbi.12623\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Biofilm Channel Origin for Vermiform Microstructure in Carbonate Microbialites 碳酸盐微生物岩中蛭石状微结构的生物膜通道起源
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-10-17 DOI: 10.1111/gbi.12623
Yadira Ibarra, Pedro J. Marenco, Jakob P. Centlivre, Brian P. Hedlund, Laura K. Rademacher, Sarah E. Greene, David J. Bottjer, Frank A. Corsetti
{"title":"A Biofilm Channel Origin for Vermiform Microstructure in Carbonate Microbialites","authors":"Yadira Ibarra,&nbsp;Pedro J. Marenco,&nbsp;Jakob P. Centlivre,&nbsp;Brian P. Hedlund,&nbsp;Laura K. Rademacher,&nbsp;Sarah E. Greene,&nbsp;David J. Bottjer,&nbsp;Frank A. Corsetti","doi":"10.1111/gbi.12623","DOIUrl":"10.1111/gbi.12623","url":null,"abstract":"<div>\u0000 \u0000 <p>A three-dimensional tubular fabric known as “vermiform microstructure” in Phanerozoic and Neoproterozoic carbonate microbialites has been hypothesized to represent the body fossil of nonspicular keratose demosponges. If correct, this interpretation extends the sponge body fossil record and origin of animals to ~890 Ma. However, the veracity of the keratose sponge interpretation for vermiform microstructure remains in question, and the origin of the tubular fabric is enigmatic. Here we compare exceptionally well-preserved microbialite textures from the Upper Triassic to channel networks created by modern microbial biofilms. We demonstrate that anastomosing channel networks of similar size and geometries are produced by microbial biofilms in the absence of sponges, suggesting the origin for vermiform microstructure in ancient carbonates is not unique to sponges and perhaps best interpreted conservatively as likely microbial in origin. We present a taphonomic model of early biofilm lithification in seawater with anomalously high carbonate saturation necessary to preserve delicate microbial textures. This work has implications for the understanding of three-dimensional biofilm architecture that goes beyond the current micro-scale observations available from living biofilm experiments and suggests that biofilm channel networks have an extensive fossil record.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142485606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology, Not Nutrient Availability, May Have Limited Primary Productivity After the Emergence of Oxygenic Photosynthesis 含氧光合作用出现后,限制初级生产力的可能是生理因素,而非营养物质的供应
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-09-26 DOI: 10.1111/gbi.12622
Christen L. Grettenberger, Dawn Y. Sumner
{"title":"Physiology, Not Nutrient Availability, May Have Limited Primary Productivity After the Emergence of Oxygenic Photosynthesis","authors":"Christen L. Grettenberger,&nbsp;Dawn Y. Sumner","doi":"10.1111/gbi.12622","DOIUrl":"https://doi.org/10.1111/gbi.12622","url":null,"abstract":"<p>The evolution of oxygenic photosynthesis in Cyanobacteria was a transformative event in Earth's history. However, the scientific community disagrees over the duration of the delay between the origin of oxygenic photosynthesis and oxygenation of Earth's atmosphere, with estimates ranging from less than a hundred thousand to more than a billion years, depending on assumptions about rates of oxygen production and fluxes of reductants. Here, we propose a novel ecological hypothesis that a geologically significant delay could have been caused by biomolecular inefficiencies within proto-Cyanobacteria—ancestors of modern Cyanobacteria—that limited their maximum rates of oxygen production. Consideration of evolutionary processes and genomic data suggest to us that proto-cyanobacterial primary productivity was initially limited by photosystem instability, oxidative damage, and photoinhibition rather than nutrients or ecological competition. We propose that during the Archean era, cyanobacterial photosystems experienced protracted evolution, with biomolecular inefficiencies initially limiting primary productivity and oxygen production. Natural selection led to increases in efficiency and thus primary productivity through time. Eventually, evolutionary advances produced sufficient biomolecular efficiency that environmental factors, such as nutrient availability, limited primary productivity and shifted controls on oxygen production from physiological to environmental limitations. If correct, our novel hypothesis predicts a geologically significant interval of time between the first local oxygen production and sufficient production for oxygenation of environments. It also predicts that evolutionary rates were likely highly variable due to strong environmental selection pressures and potentially high mutation rates but low competitive interactions.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Living to Lithified: Construction and Preservation of Silicified Biomarkers 从生活到硅化:硅化生物标记的构建与保存
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-09-25 DOI: 10.1111/gbi.12620
Kalen L. Rasmussen, Patrick H. Thieringer, Sophia Nevadomski, Aaron M. Martinez, Katherine S. Dawson, Frank A. Corsetti, Xin-Yuan Zheng, Yiwen Lv, Xinyang Chen, Aaron J. Celestian, William M. Berelson, Nick E. Rollins, John R. Spear
{"title":"Living to Lithified: Construction and Preservation of Silicified Biomarkers","authors":"Kalen L. Rasmussen,&nbsp;Patrick H. Thieringer,&nbsp;Sophia Nevadomski,&nbsp;Aaron M. Martinez,&nbsp;Katherine S. Dawson,&nbsp;Frank A. Corsetti,&nbsp;Xin-Yuan Zheng,&nbsp;Yiwen Lv,&nbsp;Xinyang Chen,&nbsp;Aaron J. Celestian,&nbsp;William M. Berelson,&nbsp;Nick E. Rollins,&nbsp;John R. Spear","doi":"10.1111/gbi.12620","DOIUrl":"https://doi.org/10.1111/gbi.12620","url":null,"abstract":"<div>\u0000 \u0000 <p>Whole microorganisms are rarely preserved in the fossil record but actively silicifying environments like hot springs provide an opportunity for microbial preservation, making silicifying environments critical for the study of microbial life through time on Earth and possibly other planetary bodies. Yet, the changes that biosignatures may undergo through lithification and burial remain unconstrained. At Steep Cone Geyser in Yellowstone National Park, we collected microbial material from (1) the living system across the active outflows, (2) the silicified areas adjacent to flows, and (3) lithified and buried material to assess the preservation of biosignatures and their changes across the lithification transect. Five biofabrics, built predominantly by <i>Cyanobacteria</i> <i>Geitlerinema</i>, <i>Pseudanabaenaceae</i>, and <i>Leptolyngbya</i> with some filamentous anoxygenic phototrophs contributions, were identified and tracked from the living system through the process of silicification/lithification. In the living systems, δ<sup>30</sup>Si values decrease from +0.13‰ in surficial waters to −2‰ in biomat samples, indicating a kinetic isotope effect potentially induced by increased association with actively growing biofabrics. The fatty acids C<sub>16:1</sub> and <i>iso</i>-C<sub>14:0</sub> and the hydrocarbon C<sub>17:0</sub> were disentangled from confounding signals and determined to be reliable lipid biosignatures for living biofabric builders and tenant microorganisms. Builder and tenant microbial biosignatures were linked to specific <i>Cyanobacteria</i>, anoxygenic phototrophs, and heterotrophs, which are prominent members of the living communities. Upon lithification and burial, silicon isotopes of silicified biomass began to re-equilibrate, increasing from δ<sup>30</sup>Si −2‰ in living biomats to −0.55‰ in lithified samples. Active endolithic microbial communities were identified in lithified samples and were dominated by <i>Cyanobacteria</i>, heterotrophic bacteria, and fungi. Results indicate that distinct microbial communities build and inhabit silicified biofabrics through time and that microbial biosignatures shift over the course of lithification. These findings improve our understanding of how microbial communities silicify, the biomarkers they retain, and transitionary impacts that may occur through lithification and burial.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":"1-30"},"PeriodicalIF":2.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fossil Geyserite and Testate Amoebae in Geothermal Spring Vent Pools: Paleoecology and Variable Preservation Quality in Jurassic Sinter of Patagonia (Deseado Massif, Argentina) 地热泉喷口池中的间歇泉化石和睾丸变形虫:巴塔哥尼亚侏罗纪烧结矿中的古生态学和不同的保存质量(阿根廷德萨多山丘)
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-09-25 DOI: 10.1111/gbi.12621
Ana Julia Sagasti, Kathleen A. Campbell, Juan L. García Massini, Amanda Galar, Diego M. Guido, Pascale Gautret
{"title":"Fossil Geyserite and Testate Amoebae in Geothermal Spring Vent Pools: Paleoecology and Variable Preservation Quality in Jurassic Sinter of Patagonia (Deseado Massif, Argentina)","authors":"Ana Julia Sagasti,&nbsp;Kathleen A. Campbell,&nbsp;Juan L. García Massini,&nbsp;Amanda Galar,&nbsp;Diego M. Guido,&nbsp;Pascale Gautret","doi":"10.1111/gbi.12621","DOIUrl":"https://doi.org/10.1111/gbi.12621","url":null,"abstract":"<p>Geyserite is a type of terrestrial siliceous hot spring deposit (sinter) formed subaerially in proximal vent areas, with near-neutral pH, alkali chloride discharge fluids characterized by initial high temperatures (~73°C to up to 100°C) that fluctuate rapidly in relation to dynamic hydrology, seasonality, wind, and other environmental parameters. We analyzed sinters at the Claudia paleogeothermal field from the Late Jurassic (~150 Ma) Deseado Massif geological province, Argentinean Patagonia. The geyserite samples—with spicular to columnar to nodular morphologies—contain abundant microfossils in monotypic assemblages that occur in three diagenetic states of preservation. The best-preserved microfossils consist of vesicle-like structures with radial heteropolar symmetry (~35 μm average diameter), circular apertures, smooth walls lacking ornamentation, and disk- or beret-like shapes. Comparisons with extant, morphologically similar organisms suggest an affinity with the testate amoebae of the <i>Arcella hemisphaerica–Arcella rotundata</i> complex and <i>Centropyxis aculeata</i> strain <i>discoides</i>. These species occur in active geothermal pools between 22°C and 45°C, inconsistent with the temperature of formation of modern geyserites. We propose that the testate amoebae may have colonized the geyserite during cooler phases in between spring-vent eruptive cycles to prey on biofilms. Silica precipitation through intermittent bathing and splashing of fluctuating thermal fluid discharge could have led to their entrapment and fossilization. Petrographic analysis supports cyclicity in paleovent water eruptions and later diagenesis that transformed the opal into quartz. Spatially patchy degradation and modification of the silicified microorganisms resulted in variable preservation quality of the microfossils. This contribution illustrates the importance of microscale analysis to locate early silicification and identify high-quality preservation of fossil remains in siliceous hot spring deposits, which are important in early life studies on Earth and potentially Mars.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological and Microbial Diversity of Hydromagnesite Microbialites in Lake Salda: A Mars Analog Alkaline Lake 萨尔达湖中水镁石微生物岩的形态和微生物多样性:火星模拟碱性湖。
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-09-23 DOI: 10.1111/gbi.12619
Yagmur Gunes, Fatih Sekerci, Burak Avcı, Thijs J. G. Ettema, Nurgul Balci
{"title":"Morphological and Microbial Diversity of Hydromagnesite Microbialites in Lake Salda: A Mars Analog Alkaline Lake","authors":"Yagmur Gunes,&nbsp;Fatih Sekerci,&nbsp;Burak Avcı,&nbsp;Thijs J. G. Ettema,&nbsp;Nurgul Balci","doi":"10.1111/gbi.12619","DOIUrl":"10.1111/gbi.12619","url":null,"abstract":"<div>\u0000 \u0000 <p>Lake Salda, a terrestrial analog for the paleolake in Jezero Crater on Mars, hosts active, subfossil, and fossil hydromagnesite microbialites, making it an ideal location to study microbialite formation and subsequent processes. Our understanding of this record is still limited by an incomplete knowledge of the macro- and mesoscale morphotypes of microbialites, along with their spatial distribution and correlation with microbial and geochemical processes that influence microbialite formation. In this study, we investigated the spatial distribution, morphotypes, mineralogy, geochemistry, and microbial diversity of the microbialites and identified six distinct zones (Zone I to Zone VI) with major microbialite build-ups in Lake Salda. Newly identified microbialites were classified based on the macro- and mesostructures. Our work shows that the lake contains stromatolites, thrombolites, stromatolitic thrombolites, dendrolites, and microbially induced sedimentary structures. At macroscale, Lake Salda microbialites exhibit hemispheres, stacked domes, and laterally linked columnar structures while minicolumns, knobs, mesoclots, laminae, and botryoidal structures are common at mesoscale. The macro- and mesoscale distribution of different microbialite types spatially correlates with microbial community composition and water depth. Deep-growing microbialites with a low abundance of Cyanobacteria (∼1%–4%) and high abundance of Firmicutes (28%–93%) exhibit steeply convex lamination, producing finger-like minicolumnar mesostructures. In contrast, shallow-growing microbialites with a low abundance of Firmicutes (0%–5%) and high abundance of Cyanobacteria (11%–37%) have well-preserved gently convex millimeter-scale lamination, resulting in cauliflower mesostructures. Palygorskite ((Mg, Al)<sub>2</sub>Si<sub>4</sub>O<sub>10</sub>(OH)) is identified in the diatom-rich microbial layer of the deep-growing microbialites. Regardless of the microbialite types, hydromagnesite and aragonite are present in the extracellular polymeric substance (EPS)-rich zone of the shallow and deep-growing microbialites. Overall, environmental changes (e.g., water depth and, accommodation space) play a major role in the formation and spatial distribution of different microbialite morphologies at the macro- and mesoscale. Differences in the relative abundance of dominant microorganisms between mesostructured types suggest that mesomorphology may be influenced by changes in microbial diversity. Spatial variations in the microbialite morphotypes, along with the abundant presence of entombed biomass (e.g., mineralized filaments), may indicate areas that have a high potential for the preservation of biosignatures.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oceanic and Sedimentary Microbial Sulfur Cycling Controlled by Local Organic Matter Flux During the Ediacaran Shuram Excursion in the Three Gorges Area, South China 中国南方三峡地区埃迪卡拉纪舒拉姆扩张期间受当地有机质通量控制的海洋和沉积微生物硫循环。
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-09-19 DOI: 10.1111/gbi.12617
Fumihiro Matsu'ura, Yusuke Sawaki, Tsuyoshi Komiya, Jian Han, Shigenori Maruyama, Takayuki Ushikubo, Kenji Shimizu, Yuichiro Ueno
{"title":"Oceanic and Sedimentary Microbial Sulfur Cycling Controlled by Local Organic Matter Flux During the Ediacaran Shuram Excursion in the Three Gorges Area, South China","authors":"Fumihiro Matsu'ura,&nbsp;Yusuke Sawaki,&nbsp;Tsuyoshi Komiya,&nbsp;Jian Han,&nbsp;Shigenori Maruyama,&nbsp;Takayuki Ushikubo,&nbsp;Kenji Shimizu,&nbsp;Yuichiro Ueno","doi":"10.1111/gbi.12617","DOIUrl":"10.1111/gbi.12617","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ&lt;sup&gt;34&lt;/sup&gt;S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ&lt;sup&gt;34&lt;/sup&gt;S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (&gt;100 μm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ&lt;sup&gt;34&lt;/sup&gt;S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be &lt;sup&gt;34&lt;/sup&gt;&lt;i&gt;ε&lt;/i&gt; = 55.7‰ and &lt;sup&gt;33&lt;/sup&gt;&lt;i&gt;λ&lt;/i&gt; = 0.5129 from the δ&lt;sup&gt;34&lt;/sup&gt;S and Δ&lt;sup&gt;33&lt;/sup&gt;S' values of medium-sized pyrite grains ranging from 100 to 300 μm and the average δ&lt;sup&gt;34&lt;/sup&gt;S and Δ&lt;sup&gt;33&lt;/sup&gt;S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ&lt;sup&gt;34&lt;/sup&gt;S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be &lt;sup&gt;34&lt;/sup&gt;&lt;i&gt;ε&lt;/i&gt; = 47.5‰. The &lt;sup&gt;34&lt;/sup&gt;&lt;i&gt;ε&lt;/i&gt; value in the middle part of Member 3 was calculated from the average δ&lt;sup&gt;34&lt;/sup&gt;S values of the rim of medium-sized pyrite grains and the average δ&lt;sup&gt;34&lt;/sup&gt;S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ&lt;sup&gt;34&lt;/sup&gt;S&lt;sub&gt;CRS&lt;/sub&gt; values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ&lt;sup&gt;34&lt;/sup&gt;S&lt;sub&gt;CRS&lt;/sub&gt; values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ&lt;s","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Spatially Restricted Distribution of Thermophilic Endospores in Laptev Sea Shelf Sediments Suggests a Limited Dispersal by Local Geofluids 拉普捷夫海大陆架沉积物中嗜热内生孢子的空间限制性分布表明当地地质流体的传播有限
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-09-11 DOI: 10.1111/gbi.12618
Emelie Ståhl, Anna Linderholm, Volker Brüchert
{"title":"A Spatially Restricted Distribution of Thermophilic Endospores in Laptev Sea Shelf Sediments Suggests a Limited Dispersal by Local Geofluids","authors":"Emelie Ståhl,&nbsp;Anna Linderholm,&nbsp;Volker Brüchert","doi":"10.1111/gbi.12618","DOIUrl":"https://doi.org/10.1111/gbi.12618","url":null,"abstract":"<p>Thermospores, the dormant resting stages of thermophilic bacteria, have been shown to be frequent but enigmatic components of cold marine sediments around the world. Multiple hypotheses have been proposed to explain their distribution, emphasizing their potential as model organisms for studying microbial dispersal via ocean currents. In the Arctic Ocean, the abundance and diversity of thermospores have previously been assumed to be low. However, this assessment has been based on data mainly from the western fjords of Svalbard, thus leaving most of the Arctic unexplored. Here, we expand the knowledge about the distribution of thermospores in the Arctic Ocean by investigating the abundance and diversity of thermospores in heated shelf sediments from three sites in the outer Laptev Sea. Two of the sites are located in an area with methane-emitting cold seeps with a thermogenic source signature suggestive of an origin in a deep hydrocarbon reservoir, while the third site is a reference site not known to be impacted by seepage. We found that activity of viable thermospore populations was more prominent at one of the investigated seep sites. This finding is supported by both radiotracer growth experiments showing thermophilic, sulfate-reducing activity triggered by heating, as well as 16S gene sequence analyses showing significantly enriched ASVs affiliated to the phylum <i>Firmicutes</i> following high-temperature incubations. An enrichment of the sulfate-reducing, endospore-forming class <i>Desulfotomaculia</i> in heated samples compared to unheated samples was also observed. Furthermore, several ASVs identified at the seep site are closely related to thermospore-producing bacteria associated with the deep biosphere, including hydrocarbon and hydrothermal systems. Based on the combined information from induced activity, estimated abundance, and phylogenetic composition using 16S rRNA gene sequencing, we propose likely source environments and dispersal vectors for thermospores in the Arctic Ocean.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significance of lignin and fungal markers in the Devonian (407 Ma) Rhynie Chert 泥盆纪(407Ma)Rhynie Chert 中木质素和真菌标记的意义。
IF 2.7 2区 地球科学
Geobiology Pub Date : 2024-08-20 DOI: 10.1111/gbi.12616
Alex I. Holman, Stephen F. Poropat, Paul F. Greenwood, Rajendra Bhandari, Madison Tripp, Peter Hopper, Arndt Schimmelmann, Luke Brosnan, William D. A. Rickard, Klaus Wolkenstein, Kliti Grice
{"title":"Significance of lignin and fungal markers in the Devonian (407 Ma) Rhynie Chert","authors":"Alex I. Holman,&nbsp;Stephen F. Poropat,&nbsp;Paul F. Greenwood,&nbsp;Rajendra Bhandari,&nbsp;Madison Tripp,&nbsp;Peter Hopper,&nbsp;Arndt Schimmelmann,&nbsp;Luke Brosnan,&nbsp;William D. A. Rickard,&nbsp;Klaus Wolkenstein,&nbsp;Kliti Grice","doi":"10.1111/gbi.12616","DOIUrl":"10.1111/gbi.12616","url":null,"abstract":"<p>The Rhynie Chert (Lower Devonian, Scotland) hosts a remarkably well-preserved early terrestrial ecosystem. Organisms including plants, fungi, arthropods, and bacteria were rapidly silicified due to inundation by silica-rich hot spring fluids. Exceptional molecular preservation has been noted by many authors, including some of the oldest evidence of lignin in the fossil record. The evolution of lignin was a critical factor in the diversification of land plants, providing structural support and defense against herbivores and microbes. However, the timing of the evolution of lignin decay processes remains unclear. Studies placing this event near the end of the Carboniferous are contradicted by evidence for fungal pathogenesis in Devonian plant fossils, including from the Rhynie Chert. We conducted organic geochemical analyses on a Rhynie Chert sample, including hydropyrolysis (HyPy) of kerogen and high-resolution mass spectrometric mapping of a thin section, to elucidate the relationship between lignin and the potential fungal marker perylene. HyPy of kerogen showed an increase in relative abundance of perylene supporting its entrapment within the silicate matrix of the chert. Lignin monomers were isolated through an alkaline oxidation process, showing a distribution dominated by H-type monomers. G- and S-type monomers were also detected, preserved by rapid silicification. Polycyclic aromatic hydrocarbons including perylene, a known marker for lignin-degrading fungi, were also concentrated in the kerogen and found to be localized within silicified plant fragments. Our results strongly link perylene in the Rhynie Chert to the activity of phytopathogenic fungi, demonstrating the importance of fungal degradation processes as far back as the Early Devonian.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信