Fossil Geyserite and Testate Amoebae in Geothermal Spring Vent Pools: Paleoecology and Variable Preservation Quality in Jurassic Sinter of Patagonia (Deseado Massif, Argentina)
Ana Julia Sagasti, Kathleen A. Campbell, Juan L. García Massini, Amanda Galar, Diego M. Guido, Pascale Gautret
{"title":"Fossil Geyserite and Testate Amoebae in Geothermal Spring Vent Pools: Paleoecology and Variable Preservation Quality in Jurassic Sinter of Patagonia (Deseado Massif, Argentina)","authors":"Ana Julia Sagasti, Kathleen A. Campbell, Juan L. García Massini, Amanda Galar, Diego M. Guido, Pascale Gautret","doi":"10.1111/gbi.12621","DOIUrl":null,"url":null,"abstract":"<p>Geyserite is a type of terrestrial siliceous hot spring deposit (sinter) formed subaerially in proximal vent areas, with near-neutral pH, alkali chloride discharge fluids characterized by initial high temperatures (~73°C to up to 100°C) that fluctuate rapidly in relation to dynamic hydrology, seasonality, wind, and other environmental parameters. We analyzed sinters at the Claudia paleogeothermal field from the Late Jurassic (~150 Ma) Deseado Massif geological province, Argentinean Patagonia. The geyserite samples—with spicular to columnar to nodular morphologies—contain abundant microfossils in monotypic assemblages that occur in three diagenetic states of preservation. The best-preserved microfossils consist of vesicle-like structures with radial heteropolar symmetry (~35 μm average diameter), circular apertures, smooth walls lacking ornamentation, and disk- or beret-like shapes. Comparisons with extant, morphologically similar organisms suggest an affinity with the testate amoebae of the <i>Arcella hemisphaerica–Arcella rotundata</i> complex and <i>Centropyxis aculeata</i> strain <i>discoides</i>. These species occur in active geothermal pools between 22°C and 45°C, inconsistent with the temperature of formation of modern geyserites. We propose that the testate amoebae may have colonized the geyserite during cooler phases in between spring-vent eruptive cycles to prey on biofilms. Silica precipitation through intermittent bathing and splashing of fluctuating thermal fluid discharge could have led to their entrapment and fossilization. Petrographic analysis supports cyclicity in paleovent water eruptions and later diagenesis that transformed the opal into quartz. Spatially patchy degradation and modification of the silicified microorganisms resulted in variable preservation quality of the microfossils. This contribution illustrates the importance of microscale analysis to locate early silicification and identify high-quality preservation of fossil remains in siliceous hot spring deposits, which are important in early life studies on Earth and potentially Mars.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12621","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12621","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Geyserite is a type of terrestrial siliceous hot spring deposit (sinter) formed subaerially in proximal vent areas, with near-neutral pH, alkali chloride discharge fluids characterized by initial high temperatures (~73°C to up to 100°C) that fluctuate rapidly in relation to dynamic hydrology, seasonality, wind, and other environmental parameters. We analyzed sinters at the Claudia paleogeothermal field from the Late Jurassic (~150 Ma) Deseado Massif geological province, Argentinean Patagonia. The geyserite samples—with spicular to columnar to nodular morphologies—contain abundant microfossils in monotypic assemblages that occur in three diagenetic states of preservation. The best-preserved microfossils consist of vesicle-like structures with radial heteropolar symmetry (~35 μm average diameter), circular apertures, smooth walls lacking ornamentation, and disk- or beret-like shapes. Comparisons with extant, morphologically similar organisms suggest an affinity with the testate amoebae of the Arcella hemisphaerica–Arcella rotundata complex and Centropyxis aculeata strain discoides. These species occur in active geothermal pools between 22°C and 45°C, inconsistent with the temperature of formation of modern geyserites. We propose that the testate amoebae may have colonized the geyserite during cooler phases in between spring-vent eruptive cycles to prey on biofilms. Silica precipitation through intermittent bathing and splashing of fluctuating thermal fluid discharge could have led to their entrapment and fossilization. Petrographic analysis supports cyclicity in paleovent water eruptions and later diagenesis that transformed the opal into quartz. Spatially patchy degradation and modification of the silicified microorganisms resulted in variable preservation quality of the microfossils. This contribution illustrates the importance of microscale analysis to locate early silicification and identify high-quality preservation of fossil remains in siliceous hot spring deposits, which are important in early life studies on Earth and potentially Mars.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.