{"title":"中国南方三峡地区埃迪卡拉纪舒拉姆扩张期间受当地有机质通量控制的海洋和沉积微生物硫循环。","authors":"Fumihiro Matsu'ura, Yusuke Sawaki, Tsuyoshi Komiya, Jian Han, Shigenori Maruyama, Takayuki Ushikubo, Kenji Shimizu, Yuichiro Ueno","doi":"10.1111/gbi.12617","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ<sup>34</sup>S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ<sup>34</sup>S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 μm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ<sup>34</sup>S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be <sup>34</sup><i>ε</i> = 55.7‰ and <sup>33</sup><i>λ</i> = 0.5129 from the δ<sup>34</sup>S and Δ<sup>33</sup>S' values of medium-sized pyrite grains ranging from 100 to 300 μm and the average δ<sup>34</sup>S and Δ<sup>33</sup>S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ<sup>34</sup>S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be <sup>34</sup><i>ε</i> = 47.5‰. The <sup>34</sup><i>ε</i> value in the middle part of Member 3 was calculated from the average δ<sup>34</sup>S values of the rim of medium-sized pyrite grains and the average δ<sup>34</sup>S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ<sup>34</sup>S<sub>CRS</sub> values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ<sup>34</sup>S<sub>CRS</sub> values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ<sup>34</sup>S<sub>CRS</sub> values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.</p>\n </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oceanic and Sedimentary Microbial Sulfur Cycling Controlled by Local Organic Matter Flux During the Ediacaran Shuram Excursion in the Three Gorges Area, South China\",\"authors\":\"Fumihiro Matsu'ura, Yusuke Sawaki, Tsuyoshi Komiya, Jian Han, Shigenori Maruyama, Takayuki Ushikubo, Kenji Shimizu, Yuichiro Ueno\",\"doi\":\"10.1111/gbi.12617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ<sup>34</sup>S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ<sup>34</sup>S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 μm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ<sup>34</sup>S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be <sup>34</sup><i>ε</i> = 55.7‰ and <sup>33</sup><i>λ</i> = 0.5129 from the δ<sup>34</sup>S and Δ<sup>33</sup>S' values of medium-sized pyrite grains ranging from 100 to 300 μm and the average δ<sup>34</sup>S and Δ<sup>33</sup>S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ<sup>34</sup>S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be <sup>34</sup><i>ε</i> = 47.5‰. The <sup>34</sup><i>ε</i> value in the middle part of Member 3 was calculated from the average δ<sup>34</sup>S values of the rim of medium-sized pyrite grains and the average δ<sup>34</sup>S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ<sup>34</sup>S<sub>CRS</sub> values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ<sup>34</sup>S<sub>CRS</sub> values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ<sup>34</sup>S<sub>CRS</sub> values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.</p>\\n </div>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"22 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12617\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12617","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Oceanic and Sedimentary Microbial Sulfur Cycling Controlled by Local Organic Matter Flux During the Ediacaran Shuram Excursion in the Three Gorges Area, South China
The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ34S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ34S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 μm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ34S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be 34ε = 55.7‰ and 33λ = 0.5129 from the δ34S and Δ33S' values of medium-sized pyrite grains ranging from 100 to 300 μm and the average δ34S and Δ33S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ34S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be 34ε = 47.5‰. The 34ε value in the middle part of Member 3 was calculated from the average δ34S values of the rim of medium-sized pyrite grains and the average δ34S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ34SCRS values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ34SCRS values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ34SCRS values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.