Journal of The Energy Institute最新文献

筛选
英文 中文
Tailoring the proceeding of the NH3-SCO and NH3-SCR reactions over FeOx catalysts by modifying with NbOx 通过氧化铌改性调整 FeOx 催化剂上 NH3-SCO 和 NH3-SCR 反应的进程
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101814
{"title":"Tailoring the proceeding of the NH3-SCO and NH3-SCR reactions over FeOx catalysts by modifying with NbOx","authors":"","doi":"10.1016/j.joei.2024.101814","DOIUrl":"10.1016/j.joei.2024.101814","url":null,"abstract":"<div><p>This study presents the synthesis of a series of FeO<sub><em>x</em></sub>-NbO<sub><em>x</em></sub> mixed oxide catalysts for the selective catalytic reduction (SCR) of NO by NH<sub>3</sub>. By meticulously controlling the Fe/Nb molar ratio, we have rationally tailored the proceeding of the main reaction of NO reduction and the side reaction of NH<sub>3</sub> oxidation to NO<sub><em>x</em></sub>. The incorporation of NbO<sub><em>x</em></sub> introduced a significant number of acid sites, which enhanced the adsorption of NH<sub>3</sub> on the catalyst surface, particularly at elevated temperatures. Additionally, the oxidative capacity of the catalyst was moderated by the addition of NbO<sub><em>x</em></sub>, hindering the over-oxidation of NH<sub>3</sub> to NO or NO<sub>2</sub>, thus preserving more NH<sub>3</sub> to act as a reductant for NO reduction. Consequently, the NbO<sub><em>x</em></sub>-enriched samples exhibited improved deNO<sub><em>x</em></sub> performance. However, an excessive amount of NbO<sub><em>x</em></sub> led to a notably weakened oxidative ability, which negatively impacted the activation of reactants and resulted in decreased NO conversion at lower temperatures. The optimized catalyst presented &gt;80 % NO conversion and &gt;95 % N<sub>2</sub> selectivity within a temperature range of 250–400 °C. These findings offer valuable insights for the development of new catalysts with an extended operational temperature window.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the co-pyrolysis behavior and bio-oil characterization of walnut shell and polyethylene by thermogravimetric analyzer and bubbling fluidized bed 利用热重分析仪和鼓泡流化床研究核桃壳和聚乙烯的共热解行为和生物油特性
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101813
{"title":"Study of the co-pyrolysis behavior and bio-oil characterization of walnut shell and polyethylene by thermogravimetric analyzer and bubbling fluidized bed","authors":"","doi":"10.1016/j.joei.2024.101813","DOIUrl":"10.1016/j.joei.2024.101813","url":null,"abstract":"<div><p>In the present work, co-pyrolysis experiments of walnut shell (WS), polyethylene (PE) and their blends were performed in the thermogravimetric analyzer and lab-scale bubbling fluidized bed reactor, to clarify co-pyrolysis behaviors, synergy interactions and pyrolysis oil properties. Besides, the HZSM-5 zeolite was used as the catalyst and its catalytic characteristics were studied. Results indicated that as PE mass ratio rose from 0 to 100 %, the initial temperature monotonically increased from 265.4 to 417.3 °C, while its terminal temperature progressively decreased from 668.3 to 527.5 °C, suggesting that the addition of PE was able to accelerate the pyrolysis of samples. The co-pyrolysis of blends was distinguished into three stages, with a negative interaction observed in the first stage and positive interactions found in second and third stages. Besides, in the bubbling fluidized bed experiments, the liquid phase product yield first elevated and then reduced with rising temperature, and a high temperature promoted the degradation of oxygen-containing compounds and enhanced aromatics generation. The synergistic interaction in the co-pyrolysis of WS and PE declined the liquid phase product yield while elevating the gas phase product yield. On the other hand, blending with PE facilitated the generation of alkanes and olefins, while inhibiting the contents of oxygen-containing components and aromatics, and simultaneously, the heavy oil fraction was increased. Finally, the carbon deposited on the surface of catalysts was amorphous carbons, and could be removed by oxidation process, whereas its catalytic properties progressively declined with rising cycle number, leading to a downtrend of aromatics and olefins and an opposite trend for oxygen-containing components.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of discharge frequency on the conversion of n-hexadecane by pulsed liquid-phase discharge in recycle and batch devices 放电频率对循环和间歇装置中脉冲液相放电转化正十六烷的影响
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101807
{"title":"Effects of discharge frequency on the conversion of n-hexadecane by pulsed liquid-phase discharge in recycle and batch devices","authors":"","doi":"10.1016/j.joei.2024.101807","DOIUrl":"10.1016/j.joei.2024.101807","url":null,"abstract":"<div><p>Converting hydrocarbons can make the fossil fuel industry more flexible in responding to market changes by producing various products to meet market demands. Efficient, clean, and flexible plasma processes are a highly promising technology for hydrocarbon processing and conversion. In this study, the conversion of n-hexadecane was investigated using ethanol solution-assisted pulsed liquid-phase discharge plasma. The effects of recycle and batch devices and discharge frequency on feedstocks conversions and product yields were examined. The use of a recycle device facilitated the conversion of n-hexadecane. Adjusting the frequency enabled the regulation of products concentration. High discharge frequency increased the cracking of n-hexadecane and promoted further cracking of reactants into smaller molecular products, boosting the proportion of H<sub>2</sub> and C<sub>2</sub> hydrocarbons, and enhancing the yield of gases and light hydrocarbons. Reducing the frequency favored polymerization reactions, resulting in the formation of heavy hydrocarbons. At a frequency of 10.2 kHz, the recycle device achieved a gas production rate of 112.1 mL/min and a gas production efficiency of 87.5 mL/kJ. With an SEI of 3202 kJ/L, the conversion of n-hexadecane was 15.5 %, the yield of light hydrocarbons was 717.0 mg, and the light product selectivity was 97.1 %. This study offers an efficient approach for the processing and conversion of hydrocarbons in the fossil fuel industry.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on interaction mechanism of steam coupling biomass sludge gasification to syngas with pickling sludge as oxygen carrier 以酸洗污泥为氧载体的蒸汽耦合生物质污泥气化制合成气的相互作用机理研究
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101810
{"title":"Study on interaction mechanism of steam coupling biomass sludge gasification to syngas with pickling sludge as oxygen carrier","authors":"","doi":"10.1016/j.joei.2024.101810","DOIUrl":"10.1016/j.joei.2024.101810","url":null,"abstract":"<div><p>A process of producing hydrogen-rich syngas by chemical looping steam gasification is proposed, using pickling sludge (PS) as the oxygen carrier and paper-making sludge(PMS) along with municipal sludge(MS) as the fuel. The reaction characteristics of producing hydrogen-rich syngas through the gasification of PMS and MS were studied. The effects of temperature, steam flow rate and the blended ratio of PS on carbon conversion rate and gasification reaction efficiency were discussed, and the migration mechanisms of the main elements were explained. The results show that FeF<sub>3</sub> in PS exhibits stronger activity than conventional Fe<sub>2</sub>O<sub>3</sub> in catalyzing the gasification of PMS and MS at high temperature. With the blended mass ratio of 1:1 of PS, the carbon conversion rate of PMS and MS was increased by 11.8 % and 42.5 %, and the gasification efficiency was increased by 11.1 % and 25.85 %. The Fe<sup>3+</sup> in PS catalyzed the cleavage of C-H bonds in biomass sludge, and Fe<sup>3+</sup> was reduced to form the intermediate product FeCr<sub>2</sub>O<sub>4</sub> with tar cracking function. After the gasification reaction, the Fe in PS was completely converted to Fe<sub>3</sub>O<sub>4</sub> under the action of MS, while the CaO in PMS promoted the valence cycle of Fe to some extent, resulting in partial Fe being fully cycled to Fe<sup>3+</sup> to form γFe<sub>2</sub>O<sub>3</sub>. In addition, the CaO can fix the F element in PS to form CaF<sub>2</sub>, thus reducing the environmental hazard.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sorption-enhanced ethanol steam reforming coupled with in-situ CO2 capture and conversion 吸附增强型乙醇蒸汽转化与原位二氧化碳捕获和转化相结合
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101808
{"title":"Sorption-enhanced ethanol steam reforming coupled with in-situ CO2 capture and conversion","authors":"","doi":"10.1016/j.joei.2024.101808","DOIUrl":"10.1016/j.joei.2024.101808","url":null,"abstract":"<div><p>The impacts of climate change and the issue of greenhouse gas emissions have sparked research into renewable energy alternatives to fossil fuels. Hydrogen has gained attention as a clean, renewable and environmentally friendly energy source. Enhanced-ethanol steam reforming has been proposed as a promising method for blue hydrogen production, addressing greenhouse gas emission issues. The use of catalysts enhances the adsorption of ethanol and water molecules on the surface, promoting the reaction rate. This study systematically explored the effects of different Fe loading and CaO addition ratios on the ethanol steam reforming and CO<sub>2</sub> conversion processes to optimize catalyst performance. The experimental results showed that Fe/SiC catalysts effectively promoted the conversion of ethanol and generated high-purity hydrogen, exhibiting excellent catalytic activity. Specifically, a catalyst with 10 % Fe loading and mixed with 0.3g CaO significantly increased the hydrogen yield to 64.4 mmol/g, which was 2.88 times higher than that without the catalyst.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of dimethoxymethane and isopropanol blending on soot formation in ethylene and propane counterflow diffusion flames 二甲氧基甲烷和异丙醇混合对乙烯和丙烷逆流扩散火焰中烟尘形成的影响
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101805
{"title":"Effects of dimethoxymethane and isopropanol blending on soot formation in ethylene and propane counterflow diffusion flames","authors":"","doi":"10.1016/j.joei.2024.101805","DOIUrl":"10.1016/j.joei.2024.101805","url":null,"abstract":"<div><p>Introducing low-carbon oxygenated fuels into the current transport sector provides an effective pathway for mitigating the emissions of greenhouse gases and harmful pollutants such as soot. Previous studies have revealed that oxygenated fuels can reduce soot formation, but the soot-reduction potential is closely related to the chemical interaction between the oxygenates and the baseline hydrocarbons. This work is devoted to study the effects of blending dimethoxymethane (DMM) and isopropanol (IPA) on soot formation in ethylene-based and propane-based counterflow diffusion flames. Soot formation in the target flames was experimentally characterized using a planar light extinction technique, accompanied by numerical analysis to provide complementary insights. The results confirmed that the effects of blending oxygenates on soot formation are sensitive to the fuel-specific molecular structure of the oxygenates and hydrocarbons. For the C<sub>2</sub>H<sub>4</sub>-based flames, blending DMM and IPA could lead to a synergistic effect on soot formation due to chemical fuel interaction, with stronger synergy observed with IPA blending. In contrast, no evident synergistic effects on soot formation were observed in the C<sub>3</sub>H<sub>8</sub>-based flames, for which a notable soot reduction was observed with DMM blending. Reaction pathway analysis suggested that the occurrence of soot synergy in the C<sub>2</sub>H<sub>4</sub>-based flames is mainly due to the chemical interaction between the methyl radicals generated from DMM/IPA and the C<sub>2</sub> species from C<sub>2</sub>H<sub>4</sub>. This study is expected to deepen our understanding of the soot formation behavior of DMM- and IPA-blended flames, thus contributing to their successful usage as clean alternative fuels.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards enhanced monocyclic aromatic hydrocarbons production from Co-pyrolysis of biomass and waste polystyrene plastic 提高生物质与废聚苯乙烯塑料共热解生产单环芳烃的能力
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101812
{"title":"Towards enhanced monocyclic aromatic hydrocarbons production from Co-pyrolysis of biomass and waste polystyrene plastic","authors":"","doi":"10.1016/j.joei.2024.101812","DOIUrl":"10.1016/j.joei.2024.101812","url":null,"abstract":"<div><p>Co-pyrolysis technology offers a viable solution for utilizing biomass and waste plastics as a valuable energy resource, to support waste management, energy supply and environmental protection. In this paper, co-pyrolysis of poplar tree (PT) and polystyrene (PS) at mixture ratios of 0:1, 3:1, 2:1, 1:1, 1:2, 1:3 and 1:0 under different pyrolysis temperatures (450, 550, 650, and 700 °C), using different catalysts (HZSM-5, MCM-41, Fe/HZSM-5, and Cu/HZSM-5) were investigated using gas chromatography/mass spectrometry (Py-GC/MS) diagnostics for determining products distribution and synergistic effects. The results showed that PT performed best at a pyrolysis temperature of 650 °C, whereas PS performed best at 550 °C. The relative amount of aromatics in the co-pyrolysis products of PT and PS was highest at 550 °C that showed positive synergistic effects. The synergistic effects from the co-pyrolysis of PT and PS were significantly different at different mixture ratios of the PT and PS feedstocks. At mixture ratios of 1:1 and 1:2, the relative amounts of polycyclic aromatic hydrocarbons (PAHs) and monocyclic aromatic hydrocarbons (MAH) were higher and showed positive synergistic effects. The catalysts promoted the generation of MAH and inhibited the PAHs formation in the co-pyrolysis. The Fe/HZSM-5 catalyst provided the most significant effect on MAH showing the highest relative amounts. The results showed that highest yield of monocyclic aromatic hydrocarbons can be achieved from the pyrolysis of PT and PS materials at 1:1 mixture ratio using Fe/HZSM-5 catalyst, at a reaction temperature of 550 °C.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical study of laminar burning velocity for Diisobutylene+ PRF/TRF mixtures 二异丁烯+ PRF/TRF 混合物层流燃烧速度的实验和数值研究
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101802
{"title":"Experimental and numerical study of laminar burning velocity for Diisobutylene+ PRF/TRF mixtures","authors":"","doi":"10.1016/j.joei.2024.101802","DOIUrl":"10.1016/j.joei.2024.101802","url":null,"abstract":"<div><p>DIB (Diisobutylene, JC<sub>8</sub>H<sub>16</sub>) strongly correlates with real gasoline and significantly impacts the combustion behavior of alternative fuels designed as gasoline substitutes. However, accuracy concerns persist in laminar burning velocity data reported in literature. In this paper, the laminar burning velocities of DIB + air, DIB + PRF + air, and DIB + TRF + air mixtures were measured by the heat flux method at 1 atm. (PRF, Primary Reference Fuel; TRF, Toluene Reference Fuel) The equivalence ratio was controlled within 0.6–1.3, and the initial temperatures were set at 298K, 318K, and 338K. Additionally, by employing the mechanism proposed by Ren et al., the simulated values align with the experimental data, thus prompting the conduction of a reaction kinetic analysis. The analysis of chemical reaction kinetics reveals the reaction pathways of DIB, with a notable observation that an increase in temperature or a decrease in equivalence ratio can both lead to an elevation in the degree of unsaturation in the bonds of intermediate species. During laminar flame combustion, PRF and TRF compete with DIB for oxygen, with PRF appearing to have a stronger ability to capture oxygen. In addition, the laminar burning velocity temperature dependence coefficient α decreases first and then increases with the increase of the equivalence ratio, where the minimum α is obtained at equivalence ratio = 1.1. Additionally, the laminar burning velocity at higher initial temperatures is estimated by the extrapolation method and compared with the experimental data reported in literature.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-step synthesis of Pt@(CrMnFeCoNi)3O4 high entropy oxide catalysts through flame spray pyrolysis 通过火焰喷射热解一步合成 Pt@(CrMnFeCoNi)3O4高熵氧化物催化剂
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101804
{"title":"One-step synthesis of Pt@(CrMnFeCoNi)3O4 high entropy oxide catalysts through flame spray pyrolysis","authors":"","doi":"10.1016/j.joei.2024.101804","DOIUrl":"10.1016/j.joei.2024.101804","url":null,"abstract":"<div><p>High entropy oxides (HEOs) show great prospects in catalysis owing to their widely tunable component structures and ease of combination with active metals. However, the development of HEO catalysts is limited by the lack of efficient synthesis methods due to the difficulty of homogeneously mixing at least five elements. In this work, flame spray pyrolysis (FSP) is successfully employed to synthesize (CrMnFeCoNi)<sub>3</sub>O<sub>4</sub> HEO with a single phase spinel structure in one step, which is verified by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDS). Taking CO catalytic oxidation as a probe reaction, the Pt@(CrMnFeCoNi)<sub>3</sub>O<sub>4</sub> HEO catalyst synthesized by FSP in one step is compared with the catalyst whose Pt is impregnated on (CrMnFeCoNi)<sub>3</sub>O<sub>4</sub> HEO support. The FSP-made catalysts have a higher catalytic reaction rate and better redox ability, which lowers the temperature of complete CO conversion by nearly 100 °C. Furthermore, it can be observed that the flame parameters can be optimized to modify the particle size and oxygen vacancies of the HEO nanoparticles, thus enhancing the catalytic performances. This work demonstrates that FSP is an effective method for the one-step synthesis of HEO catalysts with excellent catalytic performance, providing a new perspective for the synthesis of HEO-based materials.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic analysis of hydrogen-rich Co-gasification of pine wood and polypropylene-based waste masks using Fe/Dol catalyst 使用 Fe/Dol 催化剂对松木和聚丙烯基废弃掩模进行富氢共气化的机理分析
IF 5.6 2区 工程技术
Journal of The Energy Institute Pub Date : 2024-08-30 DOI: 10.1016/j.joei.2024.101801
{"title":"Mechanistic analysis of hydrogen-rich Co-gasification of pine wood and polypropylene-based waste masks using Fe/Dol catalyst","authors":"","doi":"10.1016/j.joei.2024.101801","DOIUrl":"10.1016/j.joei.2024.101801","url":null,"abstract":"<div><p>Disposable masks, predominantly made of polypropylene melt-blown fabric, present a significant environmental challenge due to their large volume and resistance to natural degradation. This study explores the co-gasification of forestry waste, specifically pine wood, and waste masks to enhance biomass gasification efficiency while enabling the high-value utilization of waste materials. The Fe/Dol catalyst, prepared by loading transition metal Fe onto calcined dolomite using the impregnation method, was tested in a two-stage fixed-bed gasification system. Steam was employed as the gasifying agent. The study systematically examines the effects of steam flow rate, gasification reforming temperature, the mixing ratio of pine wood to masks, and Fe loading on the catalyst's performance in gas-phase and liquid-phase product formation.Characterization analyses revealed that Fe oxides facilitate the cleavage of aromatic rings in aromatic compounds, leading to the formation of two-carbon chain segments and promoting the production of ethylene and propylene from aliphatic hydrocarbons. Additionally, the catalyst enhanced tar cracking, generating free radicals and ring bonds. Experimental results indicate that at a steam flow rate of 3 mg/min, a gasification temperature of 850 °C, a pine wood to mask mixing ratio of 1:2, and an Fe loading of 8 %, the hydrogen (H<sub>2</sub>) volume fraction reached 52.48 %, with a gas yield of 1.67 m³/kg and a hydrogen production rate of 78.25 g/kg.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信