{"title":"In silico identification and virtual screening to discover potent therapeutic phytochemicals against CMT2A","authors":"","doi":"10.1016/j.jics.2024.101403","DOIUrl":"10.1016/j.jics.2024.101403","url":null,"abstract":"<div><div>Charcot-Marie-Tooth (CMT2A) neuropathies are a set of monogenic diseases that affect the peripheral nervous system. The pathogenesis of CMT2A, a disease caused by genetic mutations, is linked to impaired mitochondrial dynamics and axonal biology. Therapeutic options are still limited, with only a few drugs and other authorized or underdeveloped approaches. A ligand-based virtual screening methodology was used to identify the potential MFN promoters. The natural compound subset of the ZINC database (n = 559600) was obtained and filtered using a ligand-based virtual screening technique. The top 200 compounds were identified to have more than four features that matched the target compound. Pyrx software was used to analyze the molecular docking. Based on the number and type of important binding interactions and docking results, we selected top-20 compounds with the best binding affinities for the targeted protein. 3D-QSAR analyses were performed on potential ligands identified through molecular docking analyses to predict biological activity. The pEC50 and docking scores were used to identify the potential drugs. The ADMET analysis was used to assess the kinetic characteristics of the top two drugs. According to molecular dynamics simulation, the top compound ZINC000005313168 showed high conformational stability. Based on docking results and MD findings, the best in silico hits among the compounds investigated was ZINC000005313168. These findings suggest that the compound ZINC000005313168 could be used to treat CMT2A disease. Further <em>in vivo</em> and <em>in vitro</em> studies are required to consider the present analyses.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of nanofiller compositions for enhancing thermo-mechanical properties of epoxy-based composites through the application of response surface methodology with central composite design","authors":"","doi":"10.1016/j.jics.2024.101417","DOIUrl":"10.1016/j.jics.2024.101417","url":null,"abstract":"<div><div>An epoxy based composite of modified halloysite nanotubes (A) and modified fly ash (B) with improved thermo mechanical and morphological properties has been successfully fabricated. The primary objective of this study is to analyze the factors (composition of A and B) that significantly affect the properties of nanocomposites and to find out the best optimize values of these factors using Response Surface Methodology (RSM) with Central Composite Design(CCD). The enhancement of 80 percent in the tensile strength, nearly 240 percent of flexural strength, and nearly 166 percent in impact strength has been achieved at the optimal composition of A and B. The scanning electron microscopy (SEM) analysis in the present study highlight the importance of achieving proper dispersion and interaction with the polymer matrix in order to address issues like HNT aggregation. The efficient dispersion of A (3 wt%) and B (6 wt%) in the polymer is confirmed by SEM studies. In addition the TGA graph shows good thermal stability at 340 °C.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phyto-mediated fabrication of cerium oxide nanoparticles using Mollugo oppositifolia L aqueous leaf extract: Antibacterial, antitonicity, and molecular docking studies","authors":"","doi":"10.1016/j.jics.2024.101399","DOIUrl":"10.1016/j.jics.2024.101399","url":null,"abstract":"<div><div>The use of bio-processes for synthesizing metal oxide nanoparticles represents a forefront area of research in nanotechnology. This study introduces a rapid and eco-friendly approach for producing cerium oxide nanoparticles (CeO<sub>2</sub> NPs) utilizing the aqueous extract of <em>Mollugo oppositifolia</em> L leaves as a catalyst. The synthesized CeO<sub>2</sub> NPs underwent comprehensive characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial activity of the CeO<sub>2</sub> NPs was assessed in vitro against various bacterial strains, demonstrating a concentration-dependent inhibition zone when exposed to concentrations ranging from 25 to 100 μg/mL. Antitonicity activity results of the synthesized CeO<sub>2</sub> NPs revealed significant activity. Further molecular docking studies also revealed that the synthesized CeO<sub>2</sub> NPs have better docking ability compared to control Streptomycin in <em>E. coli</em> topoisomerase II DNA gyrase B (PDB ID:1KZN).</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic charge-transfer dynamics of novel benzothiadiazole-based donor materials for higher power conversion efficiency: From structural engineering to efficiency assessment in non-fullerene organic solar cells","authors":"","doi":"10.1016/j.jics.2024.101418","DOIUrl":"10.1016/j.jics.2024.101418","url":null,"abstract":"<div><div>In the realm of organic solar cell technology, current research is dedicated to enhancing the photovoltaic properties of donor-π-acceptor (D-π-A) materials to achieve higher power conversion efficiencies (PCE). This optimization focuses particularly on fine-tuning the conduction band and electrolytic characteristics to maximize performance. Addressing the growing demand for novel materials with enhanced optoelectronic properties in organic photovoltaic research, our proposed compound BT05, one of nine new benzothiadiazole-based D-π-A donor molecules (BT01-BT09), exhibits a power conversion efficiency (PCE) of 25 %, surpassing the 18 % PCE of the reference compound BTD-OMe. TD-DFT and DFT simulations illuminate how donor modifications enhance the photovoltaic characteristics of the proposed molecules. Higher open-circuit voltage (V<sub>OC</sub>) of 1.74–2.26 V, increase in binding energy (∼1.997), <em>λ</em><sub>max</sub> (470–476 nm), reduction in energy gap (4.25–4.65 eV), also validates the PCE results and confirm the usefulness of designed molecules (BT01-BT09). Moreover, D<sub>HOMO</sub> and A<sub>LUMO,</sub> TDM, reorganization energy <em>λ</em><sub>e</sub> (0.0124–0.0134) and <em>λ</em><sub>h</sub> (0.0094–0.0098), and NPA results also confirm that BT01-BT09 molecules unlock the organic solar cell's potential and advance sustainable energy solutions through innovative technology. Among all developed compounds, BT05 displays higher V<sub>OC</sub> (2.26 V), 87 % fill-factor, and 25 % PCE; hence, it is recommended in future solar cell applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, spectral characterization and biological activities of o,o'-dihydroxyazo compounds containing gallic acid: Molecular docking and dynamics simulation and MM-PBSA studies","authors":"","doi":"10.1016/j.jics.2024.101414","DOIUrl":"10.1016/j.jics.2024.101414","url":null,"abstract":"<div><div>In the investigation, diazonium derivatives of 2-aminophenol, 2-amino-4-methylphenol, 2-amino-4-chlorophenol, and 2-amino-5-nitrophenol reacted with gallic acid to produce four distinct <em>o,o</em><em>'</em>-dihydroxyazo compounds. Description of the <em>o,o'</em>-dihydroxyazo compounds that were produced identified the substituent spectrum data using UV–Vis, FT-IR, NMR spectroscopy and MS spectrometry methods. The UV–Vis behaviors of compounds in ethanol and DMSO were noted at various pH values. The antioxidant, antimicrobial, and urease inhibitory activities of the compounds were determined spectrophotometrically and compared to standard compounds. The DPPH˙ scavenging and metal chelating activities of compound 4b were 2.17 ± 0.04 and 11.62 ± 0.64 μg/mL, respectively. Compounds exhibited an effective antibacterial activity against <em>B. cereus</em>. The urease inhibition capacity of compound 4c (IC<sub>50</sub>: 4.79 ± 0.01 μg/mL) was more effective than thiourea (IC<sub>50</sub>: 20.04 ± 0.16 μg/mL). Moreover, molecular docking calculations were used to assess the urease inhibition potentials, inhibition kinetics, and interactions of the synthesized compounds with antimicrobial enzymes and urease. The compounds had substantial impacts on density functional theory (DFT), molecular electrostatic potential (MEP), inhibition kinetics, enzyme inhibition, and PASS prediction tests. For this reason, molecular dynamics simulation and MM-PBSA energy calculation were performed to assess the compounds' stability during urease binding.</div><div>As a result, the effective pharmacological properties of the newly synthesized <em>o,o'</em>-dihydroxyazo compounds were revealed by different <em>in vitro</em> bioactivity tests and <em>in silico</em> calculations.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An improved amperometric cholesterol biosensor based on cholesterol oxidase nanostructures for pre-diagnosis of myocardial infarction","authors":"","doi":"10.1016/j.jics.2024.101415","DOIUrl":"10.1016/j.jics.2024.101415","url":null,"abstract":"<div><div>Cholesterol plays a pivotal role in human health, serving as a crucial biomarker for cardiovascular diseases, including myocardial infarction. This study presents the development of an innovative amperometric cholesterol biosensor that enhances the detection and quantification of cholesterol levels in serum. The biosensor integrates cholesterol oxidase (ChOx) nanoparticles with a modified electrode, leveraging the unique properties of platinum nanoparticles (PtNPs) and graphene nanosheets (GNs) to improve sensitivity and stability. The synthesis of PtNPs was achieved using Camellia sinensis extract, while graphene oxide was reduced to form GNs. At 2.39 mg/mL or above is deemed a biomarker for cardiovascular disorders, peripheral artery disease, heart attack, diabetes mellitus, strokes, and hypertension. The monitoring of serum cholesterol level is therefore very significant. In the present study, an innovative amperometric cholesterol biosensor was constructed by immobilizing nanoparticles of cholesterol oxidase onto a pencil graphite (PG) electrode modified with graphene nanosheets (GNs), platinum nanoparticles (PtNPs), and chitosan (CHIT). At various stages of construction, the modified electrode was characterized by employing electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The biosensor responded best when run at 0.14Vs<sup>-1</sup> at optimal pH and temperature of 8.0 and 35°C respectively. The biosensor has a wide linear range (0.1mg/mL-7.5 mg/mL), with great sensitivity (0.89 mA cm<sup>−1</sup>mgmL<sup>−1</sup>) and a low limit of detection (0.97 mg/mL). This research not only contributes to the field of biosensing but also offers a promising tool for the early diagnosis of cholesterol-related health issues, paving the way for enhanced cardiovascular disease management.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extraction of mandelic acid with tri-octyl-phosphine oxide (TOPO) in different solvents: Equilibrium and neural network analysis","authors":"","doi":"10.1016/j.jics.2024.101412","DOIUrl":"10.1016/j.jics.2024.101412","url":null,"abstract":"<div><div>Mandelic acid is an important carboxylic acid used in pharmaceutical industries. It is also important to use it as a purified form. In this study, selective extraction of mandelic acid was done by tri-octyl-phosphine oxide (TOPO) diluted in different solvents such as methyl isobutyl ketone, 1-octanol, octyl acetate, dimethyl phthalate, 2-octanone, cyclohexane and toluene. The high selectivity of mandelic acid from aqueous solution was supported by thermodynamic parameters (loading factor, distribution coefficient, and extraction efficiency). The obtained values for each solvent were applied to the Neural Network Analysis to predict phase equilibrium behaviour in ternary systems. The results showed the highest mandelic acid extraction efficiency (93.65 %) and distribution coefficient (14.74) were attained with the organic phase mixture prepared with MIBK and TOPO. Also, it was found that extraction efficiencies increased with increasing TOPO amount in the medium for all studied solvents.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and fabrication OF Cu2O@MoS2/r-Go dendrite binary electrode for quasi – Symmetric capacitor- sustainable approach","authors":"","doi":"10.1016/j.jics.2024.101411","DOIUrl":"10.1016/j.jics.2024.101411","url":null,"abstract":"<div><div>Modified hummers method to synthesise GO from powdered graphite and sodium molybdate, then green synthesised Cu<sub>2</sub>O/MoS<sub>2</sub>/rGO nanostructure prepared by economical microwave approach. XRD analysis proved that Cu<sub>2</sub>O and MoS<sub>2</sub>/rGO were present in the sample. FTIR spectra revealed a Cu<sub>2</sub>O group at around 620 cm<sup>−1</sup>, whilst EDAX analysis revealed Mo, Cu, S, O, and C characteristic bands. rGO material resembles the SEM image of Cu<sub>2</sub>O/MoS<sub>2</sub>-rGo in appearance, with dendritic morphologies of Cu<sub>2</sub>O and MoS<sub>2</sub> sheets on its exterior. When applied to nearby r-GO sheet formations, MoS2 thins down the layers. Incorporating rGO, a conductive material, into the MoS<sub>2</sub>/rGO composite greatly enhanced its capacity to store charges. Improved storage properties of the composite led to charge-discharge curves that were more symmetrical than those of pure MoS<sub>2</sub>. The significant heterostructure of 2D materials is responsible for their remarkable cyclic stability. Supercapacitors with a Cu<sub>2</sub>O/MoS<sub>2</sub>/r-GO nanostructure as manufactured are safe for use with batteries. Building 2D and 3D heterostructures to improve energy storage systems of the future is the goal of this endeavor.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of halloysite thermal decomposition through differential thermal analysis (DTA): Mechanism and kinetics assessment","authors":"","doi":"10.1016/j.jics.2024.101413","DOIUrl":"10.1016/j.jics.2024.101413","url":null,"abstract":"<div><div>The study focused on analysing the kinetics of halloysite decomposition using the differential thermal analysis (DTA) technique. Tests were carried out across a temperature span from ambient temperature to 1673 K, employing heating rates spanning from 5 to 20 °C.min<sup>−1</sup>. X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR) were utilized to identify the phases formed at different temperatures. Activation energies for halloysite decomposition were determined through isothermal and non-isothermal treatments, yielding values of approximately 151.68 kJ mol<sup>−1</sup> and 173.14 kJ mol<sup>−1</sup>, respectively. The Ligero method's Avrami constant parameter (<span><math><mrow><mi>n</mi></mrow></math></span>) and the Matusita method's numerical factor parameter (<span><math><mrow><mi>m</mi></mrow></math></span>), linked to crystal growth dimensions, were both around 1.5. These findings indicate that the degradation of halloysite is primarily governed by bulk nucleation, succeeded by the 3-dimensional growth of <em>meta</em>-halloysite characterized by polyhedron-like structure, regulated by diffusion from a consistent number of nuclei. The frequency factor for halloysite dehydroxylation was established at 8.48 × 10⁸ s⁻<sup>1</sup>.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A facile and green synthesis of corn cob-based graphene oxide and its modification with corn cob-K2CO3 for efficient removal of methylene blue dye: Adsorption mechanism, isotherm, and kinetic studies","authors":"","doi":"10.1016/j.jics.2024.101409","DOIUrl":"10.1016/j.jics.2024.101409","url":null,"abstract":"<div><div>In recent years, the treatment of synthetic dyes has become an environmental concern. In this study, a single step calcination process was used to develop the inventive, simple, and inexpensive adsorbent CC-GO/CC-K<sub>2</sub>CO<sub>3</sub> composite. The composite was employed for the treatment of methylene blue (MB), a cationic dye. Several characterization methods including powder XRD, FTIR, XPS, BET, FESEM, EDX, Raman, and HRTEM techniques were utilized for the analysis of the composite. The surface area and mean pore diameter of CC-GO/CC-K<sub>2</sub>CO<sub>3</sub> were 32.651 m<sup>2</sup> g<sup>−1</sup> and 3.71 nm, respectively. The adsorption experiment showed that optimal parameters for the removal of MB dye are at an adsorbent dose of 60 mg, initial dye concentration of 80 mg/L, contact time of 150 min, and pH value of 12 at room temperature. Under optimized conditions, CC-GO evidences a removal efficiency of 70.34 ± 1.36 % while after incorporation with CC-K<sub>2</sub>CO<sub>3</sub> the removal capacity sharply increases up to 98.10 ± 0.4 %. Kinetic and isotherm models were used to analyze the removal rate constant and equilibrium adsorption capacity under various adsorption environments. The adsorption study was found to follow the models of pseudo-second order kinetic and Freundlich isotherm. The CC-GO/CC-K<sub>2</sub>CO<sub>3</sub> composite has the maximum adsorption capacity (MAC) of 160.77 mg/g established by the Langmuir isotherm. The prepared composite has demonstrated the capacity to be recycled up to three times with a gradual decrease in its adsorption behavior, exhibiting removal efficiency of 61.66 ± 2.04 %.</div><div>A cost estimation study of the composite was also performed to assess its cost effectiveness.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}