Journal of The American Water Resources Association最新文献

筛选
英文 中文
Concurrently assessing water supply and demand is critical for evaluating vulnerabilities to climate change 同时评估水的供应和需求对于评估气候变化的脆弱性至关重要
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-02-15 DOI: 10.1111/1752-1688.13192
Sonia A. Hall, Aaron Whittemore, Julie Padowski, Matthew Yourek, Georgine G. Yorgey, Kirti Rajagopalan, Sasha McLarty, Fabio V. Scarpare, Mingliang Liu, Collins Asante-Sasu, Ashish Kondal, Michael Brady, Rebecca Gustine, Melissa Downes, Michael Callahan, Jennifer C. Adam
{"title":"Concurrently assessing water supply and demand is critical for evaluating vulnerabilities to climate change","authors":"Sonia A. Hall,&nbsp;Aaron Whittemore,&nbsp;Julie Padowski,&nbsp;Matthew Yourek,&nbsp;Georgine G. Yorgey,&nbsp;Kirti Rajagopalan,&nbsp;Sasha McLarty,&nbsp;Fabio V. Scarpare,&nbsp;Mingliang Liu,&nbsp;Collins Asante-Sasu,&nbsp;Ashish Kondal,&nbsp;Michael Brady,&nbsp;Rebecca Gustine,&nbsp;Melissa Downes,&nbsp;Michael Callahan,&nbsp;Jennifer C. Adam","doi":"10.1111/1752-1688.13192","DOIUrl":"10.1111/1752-1688.13192","url":null,"abstract":"<p>Aligning water supply with demand is a challenge, particularly in areas with large seasonal variation in precipitation and those dominated by winter precipitation. Climate change is expected to exacerbate this challenge, increasing the need for long-term planning. Long-term projections of water supply and demand that can aid planning are mostly published as agency reports, which are directly relevant to decision-making but less likely to inform future research. We present 20-year water supply and demand projections for the Columbia River, produced in partnership with the Washington State Dept. of Ecology. This effort includes integrated modeling of future surface water supply and agricultural demand by 2040 and analyses of future groundwater trends, residential demand, instream flow deficits, and curtailment. We found that shifting timing in water supply could leave many eastern Washington watersheds unable to meet late-season out-of-stream demands. Increasing agricultural or residential demands in watersheds could exacerbate these late-season vulnerabilities, and curtailments could become more common for rivers with federal or state instream flow rules. Groundwater trends are mostly declining, leaving watersheds more vulnerable to surface water supply or demand changes. Both our modeling framework and agency partnership can serve as an example for other long-term efforts that aim to provide insights for water management in a changing climate elsewhere around the world.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"543-571"},"PeriodicalIF":2.4,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139963204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating socio-hydrological responses to climatic conditions in Phoenix, Arizona 模拟亚利桑那州凤凰城对气候条件的社会-水文反应
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-02-02 DOI: 10.1111/1752-1688.13191
Renee Obringer, Dave D. White
{"title":"Simulating socio-hydrological responses to climatic conditions in Phoenix, Arizona","authors":"Renee Obringer,&nbsp;Dave D. White","doi":"10.1111/1752-1688.13191","DOIUrl":"10.1111/1752-1688.13191","url":null,"abstract":"<p>Providing adequate water supply to the growing number of urban residents will be a challenge faced by many utility managers throughout the remainder of this century. Though traditionally, water managers have looked toward supply-based solutions (e.g., expanding reservoirs), recent trends indicate a shift toward demand-side management (e.g., encouraging conservation behaviors). Here, we present an agent-based model (ABM) that simulates water supply as a function of the local climatic conditions and water consumption, which is, in part, determined based on water conservation attitudes. Our results indicate the ABM performs well (normalized root mean squared error &lt;10%) for the study area. Further, we explore various hypothetical demand management scenarios by changing the water conservation attitudes of the households (i.e., the archetypes). This scenario testing reveals a statistically significant improvement to water availability after successfully changing water conservation attitudes to be more participatory. Ultimately, this study aims to understand the nuances of water conservation attitudes and aid utilities in their goal to better manage urban water demand.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"380-391"},"PeriodicalIF":2.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of low impact development on peak flow reduction in an urban system 低影响开发对减少城市系统峰值流量的作用
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-01-12 DOI: 10.1111/1752-1688.13188
M. Pampaloni, A. Sordo-Ward, M. Lompi, T. Pacetti, S. Zubelzu, L. Rodríguez-Sinobas, P. Bianucci, E. Caporali, L. Garrote
{"title":"Performance of low impact development on peak flow reduction in an urban system","authors":"M. Pampaloni,&nbsp;A. Sordo-Ward,&nbsp;M. Lompi,&nbsp;T. Pacetti,&nbsp;S. Zubelzu,&nbsp;L. Rodríguez-Sinobas,&nbsp;P. Bianucci,&nbsp;E. Caporali,&nbsp;L. Garrote","doi":"10.1111/1752-1688.13188","DOIUrl":"10.1111/1752-1688.13188","url":null,"abstract":"<p>This study proposes an approach to evaluate the efficiency of low impact development (LID) in reducing urban runoff using a rainfall generator to disaggregate daily rainfall into sub-hourly rainfall data, which are used as input of a hydrological model at the urban watershed scale. Twelve scenarios are analyzed combining four percentages of impervious area retrofitted with LIDs (25%, 50%, 75% and 100%), and three LID combinations of green roofs (GRs) and rain gardens (RGs). The rainfall generator Rainsim V.3 is used to generate 500 years of rainfall data with a 15-min time step to analyze the performance of LIDs in the long-term with the LID module of the Soil and Water Assessment Tool hydrological model. An urban watershed of 3 km<sup>2</sup> located in Florence (Italy) is selected as a case study. Results show the performances of GRs and RG on peak flow reduction, highlighting a maximum flow reduction of single facilities ranging between 15% and 60% that can improve in case of their combination. The hydrological performances of LID combinations are very sensitive to the intensity of rainfall events, as well as percentages of area treated underlining the importance of simulating multiple scenarios of intervention to determine the most efficient combination of LIDs for a given case study and support their proper design from a urban water hydrology perspective.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"427-441"},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139625268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NOAA's National Water Model: Advancing operational hydrology through continental-scale modeling NOAA 的国家水模型:通过大陆尺度建模推进实用水文学
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-01-12 DOI: 10.1111/1752-1688.13184
Brian Cosgrove, David Gochis, Trey Flowers, Aubrey Dugger, Fred Ogden, Tom Graziano, Ed Clark, Ryan Cabell, Nick Casiday, Zhengtao Cui, Kelley Eicher, Greg Fall, Xia Feng, Katelyn Fitzgerald, Nels Frazier, Camaron George, Rich Gibbs, Liliana Hernandez, Donald Johnson, Ryan Jones, Logan Karsten, Henok Kefelegn, David Kitzmiller, Haksu Lee, Yuqiong Liu, Hassan Mashriqui, David Mattern, Alyssa McCluskey, James L. McCreight, Rachel McDaniel, Alemayehu Midekisa, Andy Newman, Linlin Pan, Cham Pham, Arezoo RafieeiNasab, Roy Rasmussen, Laura Read, Mehdi Rezaeianzadeh, Fernando Salas, Dina Sang, Kevin Sampson, Tim Schneider, Qi Shi, Gautam Sood, Andy Wood, Wanru Wu, David Yates, Wei Yu, Yongxin Zhang
{"title":"NOAA's National Water Model: Advancing operational hydrology through continental-scale modeling","authors":"Brian Cosgrove,&nbsp;David Gochis,&nbsp;Trey Flowers,&nbsp;Aubrey Dugger,&nbsp;Fred Ogden,&nbsp;Tom Graziano,&nbsp;Ed Clark,&nbsp;Ryan Cabell,&nbsp;Nick Casiday,&nbsp;Zhengtao Cui,&nbsp;Kelley Eicher,&nbsp;Greg Fall,&nbsp;Xia Feng,&nbsp;Katelyn Fitzgerald,&nbsp;Nels Frazier,&nbsp;Camaron George,&nbsp;Rich Gibbs,&nbsp;Liliana Hernandez,&nbsp;Donald Johnson,&nbsp;Ryan Jones,&nbsp;Logan Karsten,&nbsp;Henok Kefelegn,&nbsp;David Kitzmiller,&nbsp;Haksu Lee,&nbsp;Yuqiong Liu,&nbsp;Hassan Mashriqui,&nbsp;David Mattern,&nbsp;Alyssa McCluskey,&nbsp;James L. McCreight,&nbsp;Rachel McDaniel,&nbsp;Alemayehu Midekisa,&nbsp;Andy Newman,&nbsp;Linlin Pan,&nbsp;Cham Pham,&nbsp;Arezoo RafieeiNasab,&nbsp;Roy Rasmussen,&nbsp;Laura Read,&nbsp;Mehdi Rezaeianzadeh,&nbsp;Fernando Salas,&nbsp;Dina Sang,&nbsp;Kevin Sampson,&nbsp;Tim Schneider,&nbsp;Qi Shi,&nbsp;Gautam Sood,&nbsp;Andy Wood,&nbsp;Wanru Wu,&nbsp;David Yates,&nbsp;Wei Yu,&nbsp;Yongxin Zhang","doi":"10.1111/1752-1688.13184","DOIUrl":"10.1111/1752-1688.13184","url":null,"abstract":"<p>The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research and the NWS National Centers for Environmental Prediction (NCEP) implemented version 2.1 of the National Water Model (NWM) into operations in April of 2021. As with the initial version implemented in 2016, NWM v2.1 is an hourly cycling analysis and forecast system that provides streamflow guidance for millions of river reaches and other hydrologic information on high-resolution grids. The NWM provides complementary hydrologic guidance at current NWS river forecast locations and significantly expands guidance coverage and water budget information in underserved locations. It produces a full range of hydrologic fields, which can be leveraged by a broad cross section of stakeholders ranging from the emergency responder and water resource communities, to transportation, energy, recreation and agriculture interests, to other water-oriented applications in the government, academic and private sectors. Version 2.1 of the NWM represents the fifth major version upgrade and more than doubles simulation skill with respect to hourly streamflow correlation, Nash Sutcliffe Efficiency, and bias reduction, over its original inception in 2016. This paper will discuss the driving factors underpinning the creation of the NWM, provide a brief overview of the model configuration and performance, and discuss future efforts to improve NWM components and services.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"247-272"},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139533135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irrigation response to drought in the Western United States, 1987–2021 1987-2021 年美国西部干旱的灌溉对策
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-01-12 DOI: 10.1111/1752-1688.13190
David Ketchum, Zachary H. Hoylman, Douglas Brinkerhoff, Justin Huntington, Marco P. Maneta, John Kimball, Kelsey Jencso
{"title":"Irrigation response to drought in the Western United States, 1987–2021","authors":"David Ketchum,&nbsp;Zachary H. Hoylman,&nbsp;Douglas Brinkerhoff,&nbsp;Justin Huntington,&nbsp;Marco P. Maneta,&nbsp;John Kimball,&nbsp;Kelsey Jencso","doi":"10.1111/1752-1688.13190","DOIUrl":"10.1111/1752-1688.13190","url":null,"abstract":"<p>The Western United States (U.S.) relies heavily on scarce water resources for both ecological services and irrigation. However, the response of irrigation water use during drought is not well documented. Irrigation decision-making is complex and influenced by human and environmental factors such as water deliveries, crop yields, equipment, labor, crop prices, and climate variability. While few irrigation districts have plans to curtail water deliveries during droughts, water rights, fallowing patterns, crop rotations, and profit expectations also influence irrigation management at the farm scale. This study uses high-resolution satellite data to examine the response of irrigators to drought by using a novel measure of irrigation management, the Standardized Irrigation Management Index. We assess the state of drought at the field and basin scales in terms of climate and streamflow and analyze the importance of variations in crop price and drought status on decision-making and water use. We show significant variability in field-scale response to drought and that crop type, irrigation type, and federal management explain regional and field-scale differences. The relative influence of climate and prices on crop transitions indicate prices more strongly drive crop planting decisions. The study provides insights into irrigation management during drought, which is crucial for sustainable water supply in the face of the ongoing water supply crisis in the U.S. Southwest.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"603-619"},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139531922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case study of continental-scale hydrologic modeling's ability to predict daily streamflow percentiles for regulatory application 关于大陆尺度水文模型预测监管应用中日溪流百分位数能力的案例研究
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-01-12 DOI: 10.1111/1752-1688.13189
Joseph L. Gutenson, Kent H. Sparrow, Stephen W. Brown, Mark D. Wahl, Kyle B. Gordon
{"title":"Case study of continental-scale hydrologic modeling's ability to predict daily streamflow percentiles for regulatory application","authors":"Joseph L. Gutenson,&nbsp;Kent H. Sparrow,&nbsp;Stephen W. Brown,&nbsp;Mark D. Wahl,&nbsp;Kyle B. Gordon","doi":"10.1111/1752-1688.13189","DOIUrl":"10.1111/1752-1688.13189","url":null,"abstract":"<p>Regulatory practitioners use hydroclimatic data to provide context to observations typically collected through field site visits and aerial imagery analysis. In the absence of site-specific data, regulatory practitioners must use proxy hydroclimatic data and models to assess a stream's hydroclimatology. One intent of current-generation continental-scale hydrologic models is to provide such hydrologic context to ungaged watersheds. In this study, the ability of two state-of-the-art, operational, continental-scale hydrologic modeling frameworks, the National Water Model and the Group on Earth Observation Global Water Sustainability (GEOGloWS) European Centre for Medium-Range Weather Forecasts (ECMWF) Streamflow Model, to produce daily streamflow percentiles and categorical estimates of the streamflow normalcy was examined. The modeled streamflow percentiles were compared to observed daily streamflow percentiles at four United States Geological Survey stream gages. The model's performance was then compared to a baseline assessment methodology, the Antecedent Precipitation Tool. Results indicated that, when compared to baseline assessment techniques, the accuracy of the National Water Model (NWM) or GEOGloWS ECMWF Streamflow Model was greater than the accuracy of the baseline assessment methodology at four stream gage locations. The NWM performed best at three of the four gages. This work highlighted a novel application of current-generation continental-scale hydrologic models.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"461-479"},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139532440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel TPM1 Mutation Causes Familial Hypertrophic Cardiomyopathy in an Indian Family: Genetic and Clinical Correlation. 新型 TPM1 基因突变导致一个印度家庭出现家族性肥厚型心肌病:遗传与临床相关性
IF 2.6 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2024-01-01 Epub Date: 2022-04-11 DOI: 10.1007/s12291-022-01036-w
Prabodh Kumar, Ganesh Paramasivam, Tom Devasia, Mukund Prabhu, Maneesh K Rai, K Prakashini, Sandeep Mallya, Dinesh Reghunathan, A Megha, Krishnananda Nayak, Rajasekhar Moka
{"title":"A Novel <i>TPM1</i> Mutation Causes Familial Hypertrophic Cardiomyopathy in an Indian Family: Genetic and Clinical Correlation.","authors":"Prabodh Kumar, Ganesh Paramasivam, Tom Devasia, Mukund Prabhu, Maneesh K Rai, K Prakashini, Sandeep Mallya, Dinesh Reghunathan, A Megha, Krishnananda Nayak, Rajasekhar Moka","doi":"10.1007/s12291-022-01036-w","DOIUrl":"10.1007/s12291-022-01036-w","url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disorder characterised by unexplained left ventricular hypertrophy in the absence of abnormal loading conditions. The global prevalence of HCM is estimated to be 1 in 250 in the general population. It is caused due to mutations in genes coding for sarcomeric proteins. α-tropomyosin <i>(TPM1)</i> is an important protein in the sarcomeric thin filament which regulates sarcomere contraction. Mutations in <i>TPM1</i> are known to cause hypertrophic cardiomyopathy, dilated cardiomyopathy and left ventricular non-compaction. Mutations in <i>TPM1</i> causing hypertrophic cardiomyopathy are < 1%. However, some high-risk mutations causing sudden cardiac death are also known in this gene. We present a case of a novel heterozygous <i>TPM1</i> mutation, NM_001018005.2:c.203A>G, p.Gln68Arg; co-segregating in an Indian family with hypertrophic cardiomyopathy. Our report expands the mutational spectrum of HCM due to <i>TPM1</i> and provides the correlated cardiac phenotype.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"21 1","pages":"142-145"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85343819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of nutrient credit trading for total maximum daily load compliance by the urban stormwater sector: Evidence from Virginia's Municipal Separate Storm Sewer Systems 养分信用交易对城市雨水部门遵守最大日负荷总量的作用:来自弗吉尼亚州市政独立暴雨系统的证据
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2023-12-19 DOI: 10.1111/1752-1688.13176
William N. Ferris, Kurt Stephenson
{"title":"The role of nutrient credit trading for total maximum daily load compliance by the urban stormwater sector: Evidence from Virginia's Municipal Separate Storm Sewer Systems","authors":"William N. Ferris,&nbsp;Kurt Stephenson","doi":"10.1111/1752-1688.13176","DOIUrl":"10.1111/1752-1688.13176","url":null,"abstract":"<p>Water quality credit trading has been advanced as a cost-effective means of achieving regulatory compliance. However, the volume of trading activity in operational programs is typically less than estimated by empirical analysis. The compliance behavior of Virginia Municipal Separate Storm Sewer Systems (MS4s) is studied in response to the Chesapeake Bay total maximum daily load (TMDL) to understand the circumstances in which trading is adopted, the extent to which trading is adopted, and the factors contributing to trading's use or nonuse. Results indicate that MS4s generally prefer to install their own pollutant control measures rather than trade. Many MS4s, however, rely on trade as a backup compliance option. MS4s favor bay compliance options that help meet other local management objectives (erosion control, infrastructure protection, and reductions toward local water quality objectives) and provide long term pollutant control benefits. Low cost term credits do not provide such benefits. For perpetual credits, MS4s use a variety of strategies to substantially reduce the cost differences between trade and nontrade compliance options.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"392-405"},"PeriodicalIF":2.4,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visioning channel evolution for river management: Toward a functional decision support framework 为河流管理展望河道演变:建立功能性决策支持框架
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2023-12-17 DOI: 10.1111/1752-1688.13183
P. W. Downs, P. J. Soar, A. L. Cox, D. S. Biedenharn, T. A. Dahl, C. P. Haring, C. R. Thorne
{"title":"Visioning channel evolution for river management: Toward a functional decision support framework","authors":"P. W. Downs,&nbsp;P. J. Soar,&nbsp;A. L. Cox,&nbsp;D. S. Biedenharn,&nbsp;T. A. Dahl,&nbsp;C. P. Haring,&nbsp;C. R. Thorne","doi":"10.1111/1752-1688.13183","DOIUrl":"10.1111/1752-1688.13183","url":null,"abstract":"<p>Improvements in simulating and communicating the evolutionary trajectory of river morphology in response to environmental forcing over multi-decadal timeframes would foreshadow the development of “foresight competency” in river management, whereby resource managers could strategically plan toward the most preferred of several plausible futures. Of the six steps in foresight competency, visioning, which involves translating scientific forecasts into a format useable by resource managers via a user-friendly and interactive decision support tool that supports transparent decision-making, is the least well developed. The approach requires converting forecasting model outputs into metrics of channel evolution that highlight transitions either within or between channel morphology states. Here, seven process-based state transition metrics are proposed covering channel planform, morphological stability, corridor belt width, floodplain connectivity, bank erosion rate, bedform habitat diversity, and ecohydraulic diversity. To aid decision support, the metrics are converted into graphical indicators that are intuitive for management use and assembled into several prototype dashboard-style graphical user interfaces designed to facilitate interactivity. A proof-of-concept illustration is provided and priorities in development toward a fully operational decision support tool are discussed. Such developments are critical in ensuring the practical relevance of geomorphology.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"442-460"},"PeriodicalIF":2.4,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138966356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probabilistic approach to characterize the joint occurrence of two extreme precipitation indices in the upper Midwestern United States 用概率方法描述美国中西部上游地区两种极端降水指数共同出现的特征
IF 2.4 4区 环境科学与生态学
Journal of The American Water Resources Association Pub Date : 2023-12-17 DOI: 10.1111/1752-1688.13187
Manas Khan, Liang Chen, Momcilo Markus, Rabin Bhattarai
{"title":"A probabilistic approach to characterize the joint occurrence of two extreme precipitation indices in the upper Midwestern United States","authors":"Manas Khan,&nbsp;Liang Chen,&nbsp;Momcilo Markus,&nbsp;Rabin Bhattarai","doi":"10.1111/1752-1688.13187","DOIUrl":"10.1111/1752-1688.13187","url":null,"abstract":"<p>Extreme precipitation-related hazards like flash floods pose a widespread risk to humans and infrastructure around the world. In the current study, the Fisher information was applied to understand the nonstationarity of the extreme precipitation regimes, whereas copula was used to quantify the likelihood of joint occurrence of two extreme precipitation indices and associated risk assessment in the upper Midwestern United States (UMUS). The trend analysis revealed an increasing trend in 37% of the stations in heavy precipitation amount in the UMUS. The regime shift analysis showed the non-stationary nature of extreme precipitation in about half of the total stations in UMUS. Further, the bivariate analysis using copula demonstrated the risk of the joint occurrence of extreme precipitation indices potentially causing flash floods. The risk index analysis indicated about 28.8% of stations under moderate, 10.6% of stations under high and 0.4% of stations under very high risk of flash flooding. The results from the study can provide important insights for the (re)design of resilient and sustainable water infrastructure in the changing climate condition and can also inform managers and planners for better response and preparedness toward extreme precipitation-related hazards in this region. The results from this study can also help in a more accurate risk assessment, especially in the socio-economically vulnerable community.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"529-542"},"PeriodicalIF":2.4,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138965782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信