Joseph L. Gutenson, Kent H. Sparrow, Stephen W. Brown, Mark D. Wahl, Kyle B. Gordon
{"title":"关于大陆尺度水文模型预测监管应用中日溪流百分位数能力的案例研究","authors":"Joseph L. Gutenson, Kent H. Sparrow, Stephen W. Brown, Mark D. Wahl, Kyle B. Gordon","doi":"10.1111/1752-1688.13189","DOIUrl":null,"url":null,"abstract":"<p>Regulatory practitioners use hydroclimatic data to provide context to observations typically collected through field site visits and aerial imagery analysis. In the absence of site-specific data, regulatory practitioners must use proxy hydroclimatic data and models to assess a stream's hydroclimatology. One intent of current-generation continental-scale hydrologic models is to provide such hydrologic context to ungaged watersheds. In this study, the ability of two state-of-the-art, operational, continental-scale hydrologic modeling frameworks, the National Water Model and the Group on Earth Observation Global Water Sustainability (GEOGloWS) European Centre for Medium-Range Weather Forecasts (ECMWF) Streamflow Model, to produce daily streamflow percentiles and categorical estimates of the streamflow normalcy was examined. The modeled streamflow percentiles were compared to observed daily streamflow percentiles at four United States Geological Survey stream gages. The model's performance was then compared to a baseline assessment methodology, the Antecedent Precipitation Tool. Results indicated that, when compared to baseline assessment techniques, the accuracy of the National Water Model (NWM) or GEOGloWS ECMWF Streamflow Model was greater than the accuracy of the baseline assessment methodology at four stream gage locations. The NWM performed best at three of the four gages. This work highlighted a novel application of current-generation continental-scale hydrologic models.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"461-479"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case study of continental-scale hydrologic modeling's ability to predict daily streamflow percentiles for regulatory application\",\"authors\":\"Joseph L. Gutenson, Kent H. Sparrow, Stephen W. Brown, Mark D. Wahl, Kyle B. Gordon\",\"doi\":\"10.1111/1752-1688.13189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regulatory practitioners use hydroclimatic data to provide context to observations typically collected through field site visits and aerial imagery analysis. In the absence of site-specific data, regulatory practitioners must use proxy hydroclimatic data and models to assess a stream's hydroclimatology. One intent of current-generation continental-scale hydrologic models is to provide such hydrologic context to ungaged watersheds. In this study, the ability of two state-of-the-art, operational, continental-scale hydrologic modeling frameworks, the National Water Model and the Group on Earth Observation Global Water Sustainability (GEOGloWS) European Centre for Medium-Range Weather Forecasts (ECMWF) Streamflow Model, to produce daily streamflow percentiles and categorical estimates of the streamflow normalcy was examined. The modeled streamflow percentiles were compared to observed daily streamflow percentiles at four United States Geological Survey stream gages. The model's performance was then compared to a baseline assessment methodology, the Antecedent Precipitation Tool. Results indicated that, when compared to baseline assessment techniques, the accuracy of the National Water Model (NWM) or GEOGloWS ECMWF Streamflow Model was greater than the accuracy of the baseline assessment methodology at four stream gage locations. The NWM performed best at three of the four gages. This work highlighted a novel application of current-generation continental-scale hydrologic models.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"60 2\",\"pages\":\"461-479\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13189\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13189","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Case study of continental-scale hydrologic modeling's ability to predict daily streamflow percentiles for regulatory application
Regulatory practitioners use hydroclimatic data to provide context to observations typically collected through field site visits and aerial imagery analysis. In the absence of site-specific data, regulatory practitioners must use proxy hydroclimatic data and models to assess a stream's hydroclimatology. One intent of current-generation continental-scale hydrologic models is to provide such hydrologic context to ungaged watersheds. In this study, the ability of two state-of-the-art, operational, continental-scale hydrologic modeling frameworks, the National Water Model and the Group on Earth Observation Global Water Sustainability (GEOGloWS) European Centre for Medium-Range Weather Forecasts (ECMWF) Streamflow Model, to produce daily streamflow percentiles and categorical estimates of the streamflow normalcy was examined. The modeled streamflow percentiles were compared to observed daily streamflow percentiles at four United States Geological Survey stream gages. The model's performance was then compared to a baseline assessment methodology, the Antecedent Precipitation Tool. Results indicated that, when compared to baseline assessment techniques, the accuracy of the National Water Model (NWM) or GEOGloWS ECMWF Streamflow Model was greater than the accuracy of the baseline assessment methodology at four stream gage locations. The NWM performed best at three of the four gages. This work highlighted a novel application of current-generation continental-scale hydrologic models.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.