{"title":"Ultrasound pretreatment combined with supercritical CO2 extraction of Costus spicatus leaf extract","authors":"Thaíris Karoline Silva Laurintino , Thuany Naiara Silva Laurintino , Deise Parolo Tramontin , Alexandre Bella Cruz , Debora Wainstein Paiva , Ariovaldo Bolzan , Marintho Bastos Quadri","doi":"10.1016/j.supflu.2024.106372","DOIUrl":"10.1016/j.supflu.2024.106372","url":null,"abstract":"<div><p>This work aimed to obtain extracts from <em>Costus spicatus</em> leaves through ultrasonic pretreatment in supercritical CO<sub>2</sub> extraction (UAE+SFE). A central composite design was used to evaluate the influence of temperature (36–64 °C), pressure (8–20 MPa), and cosolvent (0–20 %w) in terms of overall yield and chemical composition. Morphology using scanning electron micrograph (SEM), total phenolic content, content of total flavonoid, antioxidant (DPPH and ABTS), and antibacterial activities were evaluated. UAE+SFE showed a more notable overall yield, with 6.97 %. In the SEM, the sample treated with UAE+SFE significantly impacted tissue structures, improving the selectivity of SFE regarding linolenic acid, leading to a maximum composition value of 62.5 % area according to GC-MS. Furthermore, the UAE+SFE extract exhibited strong antimicrobial activity compared to the extract obtained by the SFE technique. Based on the pioneering results, the bioactives obtained are promising and interesting for application in the cosmetic, pharmaceutical, and food industries.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106372"},"PeriodicalIF":3.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of mild subcritical fluid treatment on meat quality of farmed large yellow croakers","authors":"Wenjie Wang , Danqing Jiang , Xiubiao Chen , Xuxia Zhou , Yuting Ding","doi":"10.1016/j.supflu.2024.106370","DOIUrl":"10.1016/j.supflu.2024.106370","url":null,"abstract":"<div><p>Farmed large yellow croaker fish have stronger fishy smell and less tender texture than wild-caught ones, mostly caused by the high fat accumulation from aquaculture feeding patterns. To improve the commercial value of fillets, this study investigated a mild subcritical fluid treatment with subcritical butane (SBE) and dimethyl ether (SDME). Changes in the chemical compositions, volatile flavor compounds (VFCs) and protein denaturation were determined for 1–5 h treatments. The results showed 24 % and 44 % defatting levels under SBE and SDME treatment, respectively. GC-MS showed that SDME could induce a significant reduction of total VFC content, especially for the dominant aldehydes. There was less n-nonanal (14.65–40.13 mg/kg) and octanal content (1.67–7.21 mg/kg), no detection of trans, trans-2,4-decadienal in the SDME treated samples in comparison to those treated with SBE. The results showed that SDME treatment for 3 h had the best defatting effect, good deodorization effect and less degradation of fish protein.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106370"},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaodan Wang , Pu Yang , Ruidong Li , Guohu Tong , Jukai Chen , Yueshe Wang
{"title":"Investigation of supercritical CO2 corrosion behavior of X80 carbon steel in pipelines: An in situ experimental and DFT study","authors":"Xiaodan Wang , Pu Yang , Ruidong Li , Guohu Tong , Jukai Chen , Yueshe Wang","doi":"10.1016/j.supflu.2024.106371","DOIUrl":"10.1016/j.supflu.2024.106371","url":null,"abstract":"<div><p>The electrochemical corrosion behavior of X80 carbon steel was investigated in a supercritical CO<sub>2</sub> (sCO<sub>2</sub>) environment at 60 ℃ and 9 MPa, by in-situ experiments and density functional theory (DFT) calculations, revealing the corrosion mechanism. For in situ electrochemical measurements, two novel CO<sub>2</sub>-rich and H<sub>2</sub>O-rich cells were developed to replace the traditional three-electrode cell. Electrochemical impedance spectroscopy revealed distinct differences in the corrosion behavior between CO<sub>2</sub>-rich and H<sub>2</sub>O-rich environments during the later stages of testing. In H<sub>2</sub>O-rich environments, as corrosion time increased, the corrosion product layer gradually changed from porous to dense, eventually forming a protective layer. In CO<sub>2</sub>-rich environments, corrosion occurs mainly in areas where water condenses to form FeCO<sub>3</sub>. Simultaneously, microscopic calculations provided evidence for the three-step sCO<sub>2</sub> hydrolysis mechanism and the formation of FeCO<sub>3</sub> products.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106371"},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Friso G. Versteeg, Guilherme de M.R. Lima, Francesco Picchioni, Pablo Druetta
{"title":"Solubility of supercritical CO2 in polystyrene","authors":"Friso G. Versteeg, Guilherme de M.R. Lima, Francesco Picchioni, Pablo Druetta","doi":"10.1016/j.supflu.2024.106374","DOIUrl":"10.1016/j.supflu.2024.106374","url":null,"abstract":"<div><p>Expanded polystyrene (ePS) plays an important role in the food packaging industry. However, the foaming process is environmentally unfriendly. A sustainable alternative is dissolving supercritical CO<sub>2</sub> (scCO<sub>2</sub>) in the polystyrene (PS) matrix. Most studies so far were performed at temperatures above the PS glass transition temperature; however, a more general temperature window is desirable. In this work, the solubility of scCO<sub>2</sub> in polystyrene was measured at 323 K, 343 K, 363 K and 383 K and pressure up to 130 bar using a magnetic suspension balance (MSB). It was concluded that the solubility of CO<sub>2</sub> in PS decreases with temperature and increases with pressure. The Sanchez-Lacombe Equation of State was utilized to estimate the degree of swelling. The model developed was able to derive the experimentally determined solubilities after correction for the swelling. The interaction parameter, k<sub>12</sub>, turned out to be only a function of temperature. With these results the solubility and swelling of PS in scCO<sub>2</sub> can be more accurately assessed for different temperatures and pressures.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106374"},"PeriodicalIF":3.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896844624002092/pdfft?md5=216ec0599b69d6363ae8609ef674a44d&pid=1-s2.0-S0896844624002092-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paulina Falletti , María F. Barrera Vázquez , Pedro H. Santos , Luiz G. Gonçalves Rodrigues , Marcelo Lanza , Raquel E. Martini , Laura R. Comini
{"title":"Optimization of supercritical carbon dioxide pretreatment of Flaveria bidentis leaves prior extraction of sulfated flavonoids with subcritical water","authors":"Paulina Falletti , María F. Barrera Vázquez , Pedro H. Santos , Luiz G. Gonçalves Rodrigues , Marcelo Lanza , Raquel E. Martini , Laura R. Comini","doi":"10.1016/j.supflu.2024.106349","DOIUrl":"10.1016/j.supflu.2024.106349","url":null,"abstract":"<div><p><em>Flaveria bidentis</em> is an invasive plant containing Sulfated Flavonoids (SFs) with therapeutic potential. The extraction of these compounds would add value to the biomass generated during weeding. This work reports the optimization of the pretreatment of <em>F. bidentis</em> leaves with supercritical CO<sub>2</sub> (P-SC-CO<sub>2</sub>) prior extraction of these compounds using subcritical water extraction. The combined effect of different levels of the three factors on P-SC-CO<sub>2</sub>, Time, Pressure and Depressurization rate, was investigated with Response Surface Methodology. The optimal pretreatment conditions were as follows: Time = 30 min, Pressure = 30 MPa and Depressurization rate = 2 kg CO<sub>2</sub>/h. Under these conditions, 72.45 ± 0.99 mg of totals SFs/100 g of leaves was recovered, practically doubling total SFs extraction yield in the absence of pretreatment. In addition, the structural damage caused by P-SC-CO<sub>2</sub> on the leaves was detected using Scanning Electron Microscopy.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106349"},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Cantão Freitas , Manoel Benedito Sousa Cantão , Vanessa Souza Carvalho , Rogério Willian Silva dos Santos , Marcos Lúcio Corazza , Maria Lucia Masson
{"title":"Compressed n-propane extraction of umari pulp oil: A rich Amazon source of β-carotene and omega-9","authors":"Lucas Cantão Freitas , Manoel Benedito Sousa Cantão , Vanessa Souza Carvalho , Rogério Willian Silva dos Santos , Marcos Lúcio Corazza , Maria Lucia Masson","doi":"10.1016/j.supflu.2024.106369","DOIUrl":"10.1016/j.supflu.2024.106369","url":null,"abstract":"<div><p>Compressed <em>n</em>-propane extraction (CPE) was applied to umari fruit (<em>Poraqueiba sericea</em> Tul.) pulp to obtain an oil rich in high added-value components. CPE was performed at different temperatures and flow rate, which was compared to conventional extraction (Soxhlet). The oils were analyzed for global yields, fatty acid composition, β-carotene content, antioxidant activity, total phenolics content (TPC) total flavonoids (TF), and thermal behavior. The highest extraction yield (29.2 wt%) was obtained with CPE at 80 °C and 3 mL.min<sup>−1</sup>, being higher than that obtained by Soxhlet. The flow rate variation had a significant effect (<em>p</em> < 0.05) on the oil extraction yield, while the temperature had a negative effect. The umari oil obtained by CPE emerges as a rich source of oleic acid (omega-9) and β-carotene (vitamin A precursor), with potential to be applied in various industrial segments and inserted into the Amazon bioeconomy scenario.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106369"},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L.I. Granone , F.A. Sánchez , P. Hegel , S. Pereda
{"title":"Decaffeination of yerba mate (Ilex paraguariensis) by pressurized liquid CO2 extraction: A feasible process?","authors":"L.I. Granone , F.A. Sánchez , P. Hegel , S. Pereda","doi":"10.1016/j.supflu.2024.106368","DOIUrl":"10.1016/j.supflu.2024.106368","url":null,"abstract":"<div><p>This work introduces a pumpless high-pressure Soxhlet cross-current solid-liquid extraction method using liquid CO<sub>2</sub> and hydrated ethanol for studying the decaffeination of yerba mate. By combining experimental results with thermodynamic modelling, a comprehensive evaluation of the impact of the co-solvent composition is achieved. It is observed that an ethanol/water mixture with a specific composition of 85 wt% is optimal under mild operating conditions (283 K and 4.5 MPa) for extracting caffeine from chopped yerba mate leaves with a negligible co-extraction of caffeoyl derivative antioxidants. The obtained selectivity, together with the phase equilibrium simulation, provide evidence of the significant potential of liquid CO<sub>2</sub> extraction as a decaffeination alternative for yerba mate. Thus, high-pressure Soxhlet extraction serves as simple technique to access valuable experimental information with potential for the conceptual design of further scalable semi-continuous processes.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106368"},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Saldanha Carvalho , Francisco Manuel Barrales , Luiz Henrique Fasolin , Juliane Viganó , Julian Martínez
{"title":"Concentration of the oxyterpenes linalool and α-terpineol in orange peel oil by supercritical fluid adsorption","authors":"Victor Saldanha Carvalho , Francisco Manuel Barrales , Luiz Henrique Fasolin , Juliane Viganó , Julian Martínez","doi":"10.1016/j.supflu.2024.106354","DOIUrl":"10.1016/j.supflu.2024.106354","url":null,"abstract":"<div><p>The concentration of oxygenated monoterpenes (oxyterpenes) in orange peel oil by supercritical fluid adsorption (SFA) was investigated varying pressure (10–24 MPa) and temperature (40–60 ºC) and using silica aerogels as adsorbent. Dynamic solubility experiments were conducted to obtain the solubility of the monoterpenes in supercritical CO<sub>2</sub>, revealing that it increases with pressure regardless of temperature. For SFA, 10 MPa and 60 ºC was the most appropriate condition to concentrate oxyterpenes, leading to the lowest solubility of oxyterpenes and highlighting the advantage of lower densities for SFA’s selectivity. Furthermore, this condition yielded the highest concentration factors for oxyterpenes (4.3 for linalool and 6.5 for α-terpineol) within the 80–90 min interval. These findings contribute with valuable insights to SFA processes to concentrate oxyterpenes from orange peel oil, which has the potential to enhance the market value and functionality of this important product from citrus industries.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106354"},"PeriodicalIF":3.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxidation of benzene with N2O on ZSM-5 zeolite: A comparison of gas-phase and supercritical conditions","authors":"V.I. Bogdan , V.L. Zholobenko , T.V. Bogdan , A.L. Kustov , A.E. Koklin , I.I. Mishanin , N.V. Mashchenko , S.E. Bogorodskiy","doi":"10.1016/j.supflu.2024.106355","DOIUrl":"10.1016/j.supflu.2024.106355","url":null,"abstract":"<div><p>The catalytic oxidation of benzene with nitrous oxide (N<sub>2</sub>O) over ZSM-5 zeolite has been carried out in a continuous-flow reactor under supercritical conditions and compared with the results of the gas-phase reaction. Aromatic substrates and nitrous oxide under the conditions of supercritical experiments (300–435 °C, 6.0–18.0 MPa) are both reagents and the supercritical medium. It has been established that the productivity of the supercritical oxidation of benzene into phenol significantly exceeds the productivity of the gas-phase process owing to the limited reversible deactivation of the catalyst under supercritical conditions and the <em>in situ</em> removal of the coke precursors by the dense reaction medium. In addition, it has been demonstrated that a successful in situ regeneration of the deactivated oxidation catalyst can be carried out during the transition from gas-phase reaction conditions to supercritical conditions in one experiment.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106355"},"PeriodicalIF":3.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Permeability of porous membrane polymers modified by supercritical carbon dioxide","authors":"D.I. Kamalova, M.Kh. Salakhov","doi":"10.1016/j.supflu.2024.106357","DOIUrl":"10.1016/j.supflu.2024.106357","url":null,"abstract":"<div><p>An approach to predict the gas permeability of membrane polymers after supercritical CO<sub>2</sub> treatment is proposed. The approach is based on the connection of the temperatures of secondary relaxation transitions with the effective sizes of mobile free volume elements in the polymers. The correlation between permeability of nitrogen and effective sizes of mobile holes for a set of polymers is established. The effect of supercritical CO<sub>2</sub> on the nitrogen permeability of polycarbonate, polysulfone, polyvinylbutyral is analyzed by FTIR spectroscopy of low-molecular weight conformationally-inhomogeneous compounds introduced in the polymers. Membranes were exposed at 40 MPa and 333 K for 4 h through static treatment and dynamic treatment separately. For polyvinylbutyral, the nitrogen permeability did not change after supercritical CO<sub>2</sub> modification while for polysulphone, the effective volume of mobile holes increased, but the nitrogen permeability decreased. For polycarbonate after supercritical CO<sub>2</sub>, the effective volume of mobile holes and the nitrogen permeability increased.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106357"},"PeriodicalIF":3.4,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}