{"title":"An experimental and modeling study of propane oxidation kinetics in low temperature supercritical water","authors":"A. Mansfield , N. Sophonrat","doi":"10.1016/j.supflu.2024.106392","DOIUrl":"10.1016/j.supflu.2024.106392","url":null,"abstract":"<div><p>Propane oxidation in supercritical water was investigated at iso-thermal iso-baric conditions using a batch reactor facility. Mixtures were comprised of 0.014 % propane by volume with an equivalence ratio of 0.8 and a total density of 222 mg/mL or 610 mg/mL. Reaction times ranged from 8 to 30 min for a temperature of 375ºC at 220 or 400 bar, or 400ºC at 220 bar. Major reaction products were CO and CO<sub>2</sub> and minor products were propene, acetone, ethene, ethanol, methane, methanol and hydrogen. New detailed chemical kinetic models were developed by combining and refining existing models using genetic optimization. Model predictions exhibited excellent agreement with experimental observations, and indicated that rates of H-abstraction and OH addition reactions involving alkanes and alkenes are affected by the supercritical water environment. Model accuracy was highly sensitive to the rates of CH<sub>3</sub>O<sub>2</sub>H = CH<sub>3</sub>O + OH and CH<sub>3</sub> + H<sub>2</sub>O<sub>2</sub> = CH<sub>4</sub> + HO<sub>2</sub>.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106392"},"PeriodicalIF":3.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofiyyah Ismail , Erna Normaya , Syamimi Sulfiza Shamsuri , Anwar Iqbal , Mohd Bijarimi Mat Piah , Sharifuddin Md Zain , Mohammad Norazmi Ahmad
{"title":"Chemometric assisted green extraction of tyrosinase inhibitor from Durio zibethinus rind for skin whitening agents in cosmetic products","authors":"Sofiyyah Ismail , Erna Normaya , Syamimi Sulfiza Shamsuri , Anwar Iqbal , Mohd Bijarimi Mat Piah , Sharifuddin Md Zain , Mohammad Norazmi Ahmad","doi":"10.1016/j.supflu.2024.106393","DOIUrl":"10.1016/j.supflu.2024.106393","url":null,"abstract":"<div><p>Cosmetics typically contain artificial substances that could be harmful to people's health. Extended usage and exposure to these harmful substances are frequently linked to a number of negative impacts and illnesses. This study processed a <em>Durio zibethinus</em> rind, rich in natural antityrosinase properties, with a chemometric-assisted green extraction system. The TPC value was obtained at the optimum conditions (34.4 MPa, 62°C, and 86 min). GC-MS and FTIR spectroscopy were performed to identify the phenolic compounds and their functional group, respectively. The optimized extract contains 77 % of the mushroom tyrosinase activity. PCA shows that aspidospermidin-17-ol,1-acetyl-19,21-apoxy-15,16-dimethoxy- (AP) resembles the similar cluster with hydroquinone. COSMO-RS was used to investigate the extraction mechanism of CO<sub>2</sub> and AP during the SFE process. DFT and molecular docking were used to calculate the chemical reactivity and explain the tyrosinase inhibition mechanism, respectively. ADME-Tox and OSIRIS Property Explorer showed no violation of Lipinski’s rule, and toxicity with AP. In conclusion, a high-value, natural and safe cosmetic ingredient (AP) for cosmetopea was discovered using an innovative green extraction system.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106393"},"PeriodicalIF":3.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erick Jarles Santos de Araujo , Arthur Jessé Oliveira Braga , José Claudio Klier Monteiro Filho , Papa Matar Ndiaye , Rodney Alexandre Ferreira Rodrigues , Julian Martínez
{"title":"Supercritical fluid impregnation of phenolic compounds from passion fruit bagasse in corn starch aerogels: Phase behavior and effect of operation mode","authors":"Erick Jarles Santos de Araujo , Arthur Jessé Oliveira Braga , José Claudio Klier Monteiro Filho , Papa Matar Ndiaye , Rodney Alexandre Ferreira Rodrigues , Julian Martínez","doi":"10.1016/j.supflu.2024.106387","DOIUrl":"10.1016/j.supflu.2024.106387","url":null,"abstract":"<div><p>This work investigated the phase behavior of the system sc-CO<sub>2</sub> + ethanolic extract of passion fruit bagasse (EEPFB) and the effect of operation modes on the supercritical fluid impregnation (SFI) of phenolic compounds from EEPFB in corn starch aerogels. The total reducing capacity, antioxidant capacity (FRAP and ORAC), piceatannol amount and SFI yield (%) were evaluated. Three of the four system compositions showed the formation of a solid phase. SFI in static mode provided the best TRC, FRAP, and ORAC results. There were no significant differences in the amount of piceatannol and yield (%). The nitrogen adsorption/desorption test possibly indicates the filling of the aerogel pores with EEPFB and images of the aerogel before and after SFI suggest the incorporation of phenolic compounds into the corn starch aerogels through precipitation.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106387"},"PeriodicalIF":3.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yuan, Kun Xue, Xiulu Gao, Yichong Chen, Ling Zhao, Dongdong Hu
{"title":"Green preparation of biodegradable poly (butylene adipate-co-terephthalate) foam modified with bio-based epoxidized cardanol using supercritical fluid foaming","authors":"Jie Yuan, Kun Xue, Xiulu Gao, Yichong Chen, Ling Zhao, Dongdong Hu","doi":"10.1016/j.supflu.2024.106391","DOIUrl":"10.1016/j.supflu.2024.106391","url":null,"abstract":"<div><p>Poly (butylene adipate-co-terephthalate) (PBAT) foam is a potential alternative to conventional packaging materials. However, its wide adoption is hindered by issues such as low foaming–expansion ratios and shrinkage. A series of biodegradable epoxidized cardanol (EC)-modified PBAT foams were prepared using supercritical carbon dioxide (CO<sub>2</sub>) foaming. The addition of EC enhanced the crystallisation temperature and stiffness, and improved the rheological properties, thereby promoting polymer foamability. When the EC content reached 0.6 wt%, lightweight foams with the highest initial expansion ratio (<em>R</em><sub>v</sub>) of 48.4 were produced before shrinkage. N<sub>2</sub> was introduced as a co-blowing agent to reduce shrinkage of the PBAT foams, resulting in the production of a microcellular foam with a stable <em>R</em><sub>v</sub> of 12.9. EC improved the foamability of PBAT while also introducing the co-blowing agent N<sub>2</sub> to resist shrinkage. These findings can serve as valuable insights for the large-scale production of lightweight biodegradable foams.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106391"},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Júlia C. Kessler - , Isabel M. Martins , Yaidelin A. Manrique , Alírio E. Rodrigues , Maria Filomena Barreiro , Madalena M. Dias
{"title":"Advancements in conventional and supercritical CO2 extraction of Moringa oleifera bioactives for cosmetic applications: A review","authors":"Júlia C. Kessler - , Isabel M. Martins , Yaidelin A. Manrique , Alírio E. Rodrigues , Maria Filomena Barreiro , Madalena M. Dias","doi":"10.1016/j.supflu.2024.106388","DOIUrl":"10.1016/j.supflu.2024.106388","url":null,"abstract":"<div><p><em>Moringa oleifera</em> L. extracts (Mo) have attracted attention as a sustainable and effective alternative to synthetic ingredients for cosmetic formulations. The unique and diverse phytochemical profile of the Mo tree enhances the quality and appeal of commercial products, as evidenced by numerous studies and patents. Supercritical carbon dioxide extraction (SFE-CO<sub>2</sub>) is particularly advantageous for this purpose, offering enhanced thermostability and selectivity of extracted compounds compared to conventional methods. This review examines the safety and efficacy of Mo seed, leaf, and root extracts as cosmetic ingredients, focusing on their bioavailability and performance by considering the thermodynamics and operational benefits of SFE-CO<sub>2</sub>. The collected data highlights the method’s efficiency in terms of the total extraction yield and the recovery of target compounds from Mo, providing insights from optimisation studies and linking the solvation power of supercritical CO<sub>2</sub> with the significant non-polar and low-polar compounds present in Mo extracts.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106388"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896844624002237/pdfft?md5=5e983ad8cc9d243bcb3b8a7aecab4d67&pid=1-s2.0-S0896844624002237-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Runfeng Xiao , Jing Cao , Liang Chen , Zixin Zhang , Bin Ye , Yijie Cai , Yu Hou
{"title":"Experimental and numerical study on the heat transfer deterioration of supercritical nitrogen in a vertical tube","authors":"Runfeng Xiao , Jing Cao , Liang Chen , Zixin Zhang , Bin Ye , Yijie Cai , Yu Hou","doi":"10.1016/j.supflu.2024.106376","DOIUrl":"10.1016/j.supflu.2024.106376","url":null,"abstract":"<div><p>Supercritical cryogenic fluids exhibit significant potential for diverse applications across various industries, including liquid air energy storage, high-temperature superconducting cables, and hypersonic vehicle engine cooling. Heat transfer deterioration (HTD) poses a substantial risk to the system safety. In this study, we constructed an experimental system and performed numerical simulations to illustrate buoyancy (<strong>Bu</strong>) and thermal acceleration (<strong>Ac</strong>) effects on HTD of supercritical nitrogen (SCN<sub>2</sub>). The newly established thresholds for buoyancy and thermal acceleration (<strong>Bu</strong><sub>th</sub>=1.8×10<sup>−4</sup> and <strong>Ac</strong><sub>th</sub>=4.4×10<sup>−5</sup>), considering pseudo two-phase characteristics, can effectively capture buoyancy and thermal acceleration in the first and second HTD regions. The first region is influenced by the combined effect of buoyancy and thermal acceleration, while the second region is mainly influenced by thermal acceleration. The new correlations and thresholds accurately predict the occurrence of HTD and the peak position. The experimental and simulation results contribute to understanding the impact of buoyancy and thermal acceleration on SCN<sub>2</sub> HTD.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106376"},"PeriodicalIF":3.4,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amal Ayad , Mojgan Ebrahiminejadhasanabadi , Wayne Michael Nelson , Latifa Negadi , Paramespri Naidoo
{"title":"High-pressure phase equilibrium for carbon dioxide solubility with biofuels: Experimental and thermodynamic insights in 2,5-dimethylfuran and methyl levulinate","authors":"Amal Ayad , Mojgan Ebrahiminejadhasanabadi , Wayne Michael Nelson , Latifa Negadi , Paramespri Naidoo","doi":"10.1016/j.supflu.2024.106378","DOIUrl":"10.1016/j.supflu.2024.106378","url":null,"abstract":"<div><p>The solubility of carbon dioxide in two solvents, 2,5-dimethylfuran and methyl levulinate, were measured to high pressure, up to 9.1 MPa, at three different temperatures (283.15, 303.15 and 323.15) K. The new data were measured using both the isothermal synthetic technique and the variable volume synthetic method. Two methods were utilised to provide a level of data validation. The uncertainties in the measured data were critically estimated. The experimental phase equilibrium data were modeled using the Peng-Robinson equation of state and the Wong-Sandler mixing rule with a single set of binary interaction parameters for each system. The data indicated that the solubility of carbon dioxide in both 2,5-dimethylfuran and methyl levulinate at high pressures was relatively low, suggesting a low capacity of these biofuels to dissolve carbon dioxide at high pressure.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106378"},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing anti-diabetic activity and reducing cytotoxicity of T. crispa extracts through sustainable approach of pressurized hot water extraction and micelle-mediated separation","authors":"Kunat Suktham , Suvimol Surassmo , Chaisak Chansriniyom , Motonobu Goto , Artiwan Shotipruk","doi":"10.1016/j.supflu.2024.106377","DOIUrl":"10.1016/j.supflu.2024.106377","url":null,"abstract":"<div><p>In this study, pressurized hot water extraction (PHWE) was evaluated for the recovery of anti-diabetic borapetoside C (BPC) from <em>T. crispa</em> stems. The maximum BPC extraction efficiency obtained at 100 ˚C, 2.5 MPa and 5.0 mL/min was considerably higher than that obtained by the conventional methods. Under optimized conditions, one-site kinetic desorption model could most accurately describe the PHWE behavior, suggesting an intra-particle diffusion-controlled mechanism. The undesirable compounds in the extract were further removed by micelle-mediated separation (MMS), in which Tween 80 was added, followed by NaCl addition and slight temperature increase to induce phase separation. At the most suitable MMS condition, with 0.028 mM Tween 80, 0.4 M NaCl, at 85 ˚C, the majority (87 %) of BPC could be recovered in the aqueous phase after 40 min. After MMS, the resulting extract exhibited low cytotoxicity against L6 and HepG2 cells while maintaining significant α-glucosidase and α-amylase inhibition activities.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106377"},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of potassium deactivation rule in supercritical water gasification of coal with K2CO3 as catalyst","authors":"Chenchen Zhou, Hui Jin, Zhiwei Ge, Liejin Guo","doi":"10.1016/j.supflu.2024.106375","DOIUrl":"10.1016/j.supflu.2024.106375","url":null,"abstract":"<div><p>K<sub>2</sub>CO<sub>3</sub> has a good catalytic effect in supercritical water gasification (SCWG) of coal. However, researchers have mainly focused on the effects of coal gasification, while the potassium mass transfer process has rarely been studied. Herein, the distribution pattern of potassium during the SCWG of coal and the factors influencing potassium deactivation were experimentally obtained. Through the detection and analysis of the residues after the SCWG of coal, it is found that potassium only exists in the forms of liquid and solid and the potassium in the residue exists in the form of insoluble potassium silica alumina, which does not have a catalytic effect. At a high reaction temperature, the reaction time is longer, and when the silica–aluminum content in coal is higher, the potassium deactivate rate is also higher. The molar contents of potassium and aluminum in the coal gasification residue are linearly correlated, with a ratio of approximately 1:1. Reducing the aluminum content in coal can effectively reduce potassium deactivation. In the SCWG of the Hebi coal, the deactivation rate of potassium reduced from 80.88 % to 17.75 % after acid washing. In the SCWG of the ash-free coal, the carbon gasification efficiency (CE) and potassium content in the liquid were above 95 % after each experiment, there was no deactivation of potassium, and the residual potassium solution remained catalytically effective after the SCWG of the ash-free coal.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106375"},"PeriodicalIF":3.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariana Fortunatti-Montoya , Pablo E. Hegel , Selva Pereda
{"title":"Density and viscosity of orange peel oil saturated with pressurized CO2","authors":"Mariana Fortunatti-Montoya , Pablo E. Hegel , Selva Pereda","doi":"10.1016/j.supflu.2024.106373","DOIUrl":"10.1016/j.supflu.2024.106373","url":null,"abstract":"<div><p>In this work, we measure the density and viscosity of CO<sub>2</sub> saturated orange peel oil liquid mixtures under moderated pressure for the purpose of supercritical process engineering design. A high-pressure falling weight viscometer is used to measure the viscosity of saturated liquid mixtures of orange oil + CO<sub>2</sub> at different temperatures (293 K to 333 K) and saturated pressures (2 MPa to 10.3 MPa). An important variation of viscosity (0.35.10<sup>−3</sup> Pa.s to 1.10 10<sup>−3</sup> Pa.s) is reported in the range of operating conditions. Results show the operating temperature influences the viscosity of both the pure oil and the CO<sub>2</sub>-saturated oily substrates. The new viscosity data correlates with a simple Arrhenius modified type model.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106373"},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}