P. Alarcón, D. Anderson, A. Archer, G. Barrowclough, A. Beardsell, J. Bednarz, D. Bell, J. Bell, K. Biles, S. Birrer, G. Blanco, P. Bloom, S. Chiavacci, W. Clark, M. Collopy, R. Crandall, B. Dudek, P. Dumandan, J. Heath, A. Hunt, W., Keeley, J. Kolowski, M. Martell, A. Matz, J. McCabe, R. McCabe, H., McCaslin, C. McClure, K. McDonnell, E. Miller, K. Miller, R. Miller, T. Miller, E. Mojica, J. Morant, J. Morrison, J. Morrow, D. Oleyar, N. Paprocki, A. Passarotto, M. Prommer, B. Robinson, E. Ruelas, Inzunza, M. Saggese, J. Smallwood, S. Smith, J. Terraube, D. Varland
{"title":"Manuscript Referees","authors":"P. Alarcón, D. Anderson, A. Archer, G. Barrowclough, A. Beardsell, J. Bednarz, D. Bell, J. Bell, K. Biles, S. Birrer, G. Blanco, P. Bloom, S. Chiavacci, W. Clark, M. Collopy, R. Crandall, B. Dudek, P. Dumandan, J. Heath, A. Hunt, W., Keeley, J. Kolowski, M. Martell, A. Matz, J. McCabe, R. McCabe, H., McCaslin, C. McClure, K. McDonnell, E. Miller, K. Miller, R. Miller, T. Miller, E. Mojica, J. Morant, J. Morrison, J. Morrow, D. Oleyar, N. Paprocki, A. Passarotto, M. Prommer, B. Robinson, E. Ruelas, Inzunza, M. Saggese, J. Smallwood, S. Smith, J. Terraube, D. Varland","doi":"10.3356/JRR-Manuscript-Referees","DOIUrl":"https://doi.org/10.3356/JRR-Manuscript-Referees","url":null,"abstract":"The editorial staff thanks the following people for reviewing manuscripts for The Journal of Raptor Research in 2022. Peer review plays a vital role in the publishing process and improving the quality of the Journal. The names of those who reviewed two or more manuscripts are indicated with an asterisk. M. Abou-Turab, N. Agostini*, P. Alarcón*, M. Allen, T. Allison, O. Al-Sheikhly, D. Anderson*, A. Archer*, L. Arias Bernal, F. Barbar, R. Barbour, J. Barclay, G. Barrowclough, A. Beardsell, J. Bednarz*, D. Bell*, J. Bell*, K. Biles*, S. Birrer, G. Blanco*, P. Bloom*, C. Boal, G. Bogliani, J. Bosch, A. Botha, J. Brown, J. Buchanan, I. Bueno, K. Burnham, J. Calladine, S. Campbell, A. Capdevielle, V. Careau. C.-C. Chen, S. Chiavacci, W. Clark*, M. Collopy*, C. Concepcion, T. Conkling, D. Cooper, R. Crandall*, C. Davis, R. Dawson, F. DechaumeMoncharmont, S. Destefano, D. Diego Méndez, C. Dove, B. Dudek*, P. Dumandan*, O. Duriez, R. Efrat, Y. Ehlers-Smith, K. Elliott, T. Esque, C. Farmer, D. Fernández-Bellon, R. Figueroa R., M. Finkelstein, G. Fitzgerald, D. Fogell, J. Gallardo, T. Ganesh, M.-S. Garcia-Heras, R. Gerhardt, J. Gjershaug, L. Goodrich, J. Grande*, K. Gura, F. Hailer, M. Heacker, J. Heath*, K. Heath-Acre, C. Henny, C. Hermes, G. Herring*, S. Hindmarch, G. Holroyd, M. Huang, Y.-K. Huang*, A. Hunt*, G. Hunt, P. Hurtado, F. Iannarilli, W. Inselman, R. Jackman, M. Jiménez-Franco, K. Johansen, D. Johnson, M. Juhant, M. Kamm, E. Kappers, T. Katzner, W. Keeley*, E. Kettel, K. Kittelberger, M. Kochert, J. Kolowski*, O. Krone, Y. Kropacheva, V. Kucherenkol, R. Kumar, P. Legagneux, G. Leonardi, J. Lincer, M. Marini, M. Martell*, A. Matz, J. McCabe*, R. McCabe*, H. McCaslin, C. McClure*, K. McDonnell*, S. McPherson, P. Mehta, J. Meiburg, M. Melo, D. Méndez, E. Miller, K. Miller*, R. Miller*, T. Miller*, B. Millsap, E. Miranda, E. Mojica*, J. Morant*, J. Morrison, J. Morrow*, R. Muriel, C. Murn, C. Nadeau, C. Nicolai, V. Nijman, G. Njurumana, D. Ogada, D. Oleyar*, P. Olsen, S. Oppel, P. Orozco Valor, M. Otto, J. Pagel, C. Palacı́n, C. Panter, N. Paprocki*, A. Passarotto*, J. Pay, M. Pfeiffer, E. Phillips, P. Plaza, M. Prommer*, G. Proudfoot, C. Puan, S. Rae, G. Ritchison, B. Robinson*, E. Ruelas Inzunza*, M. Saggese*, G. Santolo, S. Sawant, S. Schulwitz, D. Scott, M. Seamans, B. Skipper*, J. Smallwood*, S. Smith*, V. Sokolov, G. Sonerud, S. Sonsthagen, R. Soria, D. Stahlecker, R. Steen, K. Steenhof*, T. Subedi, T. Swem, I. Szabo, J. Terraube*, M. Thakur, J.-F. Therrien, R. Thorstrom, F. Tulis, U. Väli, B. van der Veen, W. Vansteelant, D. Varland*, F. Vilella, B. Washburn, J. Watson, K. Watson*, P. Watts, E. West, K. Wiebe*, H. Williams, K. Williams, R. Wilson, T. Wilson, E. Wommack, T. Yamazaki, R. Ydenberg, D. Yong.","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"19 1","pages":"123 - 123"},"PeriodicalIF":1.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84603783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scavenging of Roadkill by Mississippi Kites (Ictinia mississippiensis)","authors":"C. Boal","doi":"10.3356/JRR-22-98","DOIUrl":"https://doi.org/10.3356/JRR-22-98","url":null,"abstract":"Mississippi Kites (Ictinia mississippiensis) prey primarily on large-bodied aerial insects such as cicadas (Hemiptera), locusts (Orthoptera), dragon flies (Odonata), and beetles (Coleoptera) but will, occasionally, take small aerial and terrestrial vertebrate prey (Glinski and Ohmart 1983, Shaw 1985, Bader and Bednarz 2011, Chiavacci et al. 2014, Welch and Boal 2015). Mississippi Kites are aerial hunters, capturing their prey while in flight, but also glean prey from branches of trees and capture nestling birds from nests (Welch and Boal 2015, Parker 2020). Several species of Accipitriformes (e.g., Golden Eagles [Aquila chrysaetos], Ferruginous Hawks [Buteo regalis]) and Falconiformes (e.g., Merlins [Falco columbarius], Peregrine Falcons [F. peregrinus]) are known to engage in facultative scavenging (Knopper et al. 2006, McIntyre et al. 2009, Lonsdorf et al. 2018, Varland et al. 2018, Skalos et al. 2022). However, scavenging by Mississippi Kites has not been described; the only published reference to the behavior that I have found is the statement that they ‘‘Will scavenge diverse roadkills (JWP)’’ (Parker 2020). Here I reported two observations of scavenging by Mississippi Kites in the urban setting of Lubbock, TX, USA. On 7 July 2022 at 0940 H, I was in a vehicle on a residential two-lane street waiting to enter the flow of traffic on a north-south running six-lane (three lanes in each direction with a turn lane in the center) thoroughfare. I observed an adult Mississippi Kite flying up from the road as traffic came by. It circled and went back down low between lanes of south-bound traffic, flared up, circled again and went back down and landed on an apparently road-killed White-winged Dove (Zenaida asiatica). It appeared to try to peck at the dove before quickly taking flight again as a new wave of vehicles went by. I lost sight of the Mississippi Kite after that, but when I returned later in the day, the remains of the dove were still present. In a separate incident on 13 July 2022 at approximately 0830 H, I observed three adult Mississippi Kites making repeated swoops, one after the other, down to a road-killed bird while barely avoiding vehicle traffic on a busy residential street. The three birds landed only briefly on the dead bird and sometimes pecked at it. This continued for several minutes during which the kites swooped down then lifted up repeatedly, and sometimes circled around higher or perched on a tree in a yard before returning to swooping at the roadkill. They eventually gave up and drifted away from the area. I inspected the roadkill and found that it too was a White-winged Dove. White-winged Doves are not reported as prey of Mississippi Kites. However, the rich nutritional value and volume of an available White-winged Dove carcass, compared to the primarily invertebrate diet of kites, may be very attractive to a Mississippi Kite. The Mississippi Kites in these observations tried to feed on the carcasses where they lay rather ","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"28 1","pages":"121 - 122"},"PeriodicalIF":1.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90232543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Andersen, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard, B. Bedrosian, D. Bell, R. Bierregaard, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade, J. Calvo, R. Dawson, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer, J. Fickel, A. Flesch, J. Franson, A. Harmata, J. Heath, C. Henny, S. Hindmarch, G. Holroyd, D. Holt, G. Hunt, F. Isaacs, M. Jensen, J. Jiménez, G. Kaltenecker, G. Kopij, G. Kramer, T. Krause, O. Krone, S. Kross, S. Lambertucci, G. Leonardi, J. Lewis, C. Lindell, B. Mannan, M. Martell, M. McGrady, K. McKay, T. Miller, E. Mojica, C. Nicolai, G. Niemi, J. Orlowski, K. Otter, J. Owen, J. Pagel, M. Panuccio, K. Pias, J. Schmutz, M. Scholer, M. Seidensticker, P. Sharpe, P. Singleton, J. Slaght, S. Slater, J. Smallwood, S. Sonsthagen, D. Stahlecker, K. Steenhof, U. Uslu, J. Wade, Z. Wallace, J. Watson, R. Watson, S. Weidensaul, G. Zi
{"title":"Manuscript Referees","authors":"D. Andersen, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard, B. Bedrosian, D. Bell, R. Bierregaard, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade, J. Calvo, R. Dawson, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer, J. Fickel, A. Flesch, J. Franson, A. Harmata, J. Heath, C. Henny, S. Hindmarch, G. Holroyd, D. Holt, G. Hunt, F. Isaacs, M. Jensen, J. Jiménez, G. Kaltenecker, G. Kopij, G. Kramer, T. Krause, O. Krone, S. Kross, S. Lambertucci, G. Leonardi, J. Lewis, C. Lindell, B. Mannan, M. Martell, M. McGrady, K. McKay, T. Miller, E. Mojica, C. Nicolai, G. Niemi, J. Orlowski, K. Otter, J. Owen, J. Pagel, M. Panuccio, K. Pias, J. Schmutz, M. Scholer, M. Seidensticker, P. Sharpe, P. Singleton, J. Slaght, S. Slater, J. Smallwood, S. Sonsthagen, D. Stahlecker, K. Steenhof, U. Uslu, J. Wade, Z. Wallace, J. Watson, R. Watson, S. Weidensaul, G. Zi","doi":"10.3356/0892-1016-51.1.94","DOIUrl":"https://doi.org/10.3356/0892-1016-51.1.94","url":null,"abstract":"The following people reviewed manuscripts for The Journal of Raptor Research in 2016. Peer review plays a vital role in the publishing process and improving the quality of the Journal. The editorial staff would like to thank the following people for reviewing manuscripts in the last year. The names of those who reviewed two or more manuscripts are indicated with an asterisk. N. Agostini, F.H. Aguiar-Silva, D. Andersen*, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard*, B. Bedrosian, D. Bell*, R. Bierregaard*, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade*, J. Calvo, R. Dawson*, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dunk, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer*, J. Fickel, R. Figueroa R.*, A. Flesch, J. Franson, M. Fuller, M. Garcı́a, L. Goodrich, J. Grande, R. Gutierrez, F. Hailer, D. Hall, A. Harmata, J. Heath, C. Henny, S. Hindmarch*, G. Holroyd*, D. Holt, G. Hunt*, F. Isaacs, K-O. Jacobsen, M. Jensen, J. Jiménez, G. Kaltenecker, C. Kassara, T. Katzner, R. Kenward, T. Kern, M. Kissling, M. Kochert, G. Kopij, G. Kramer, R. Kraus, T. Krause, O. Krone*, S. Kross*, S. Lambertucci, G. Leonardi, J. Lewis, O. Lind, C. Lindell, B. Mannan, M. Martell*, B. Martı́n, J. Martı́nez, J.E. Martı́nez, M. Mayo, C. McClure, S. McGehee, M. McGrady, K. McKay, T. Miller*, E. Mojica*, R. MolinaLópez, G. Montopoli, R. Murphy, V. Naidoo, J. Negro, I. Newton, C. Nicolai, G. Niemi*, E. Nol, H. Noor, T. Nygård, V. Ojeda, L. Olson, G. Orłowski, J. Orlowski, K. Otter*, J. Owen, J. Pagel*, M. Panuccio*, K. Pias, D. Pietersen, S. Poessel, E. Potapov, G. Proudfoot, P. Pyle, J. Raithel, J. Resano-Mayor, M. Restani, R. Risebrough, C. Rodrı́guez, R. Rosenfield, J. Rotenberg, R. Rozema, T. Rymer, G. Santolo, M. Sarà, J. Schmutz, M. Scholer*, M. Seidensticker, P. Sharpe*, M. Simes, P. Singleton, J. Slaght, S. Slater, J. Smallwood*, B. Smith, J. Smits, C. Solaro, M. Solensky, S. Sonsthagen, D. Stahlecker*, K. Steenhof, J.-F. Therrien, R. Thorstrom, C. Turrin, U. Uslu, J. Wade, Z. Wallace*, J. Watson*, R. Watson, S. Weidensaul, D. Wiens, D. Wiggins, P. Williams, A. Wilson, E. Wommack, P. Wood, B. Woodbridge, G. Zimmerman, and I. Zuberogoitia","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"49 1","pages":"94 - 94"},"PeriodicalIF":1.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83248136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraguild Predation of an American Kestrel Fledgling by Crested Caracaras in Northern Patagonia, Argentina","authors":"Valeria Ojeda, Bruno Riovitti","doi":"10.3356/jrr-22-38","DOIUrl":"https://doi.org/10.3356/jrr-22-38","url":null,"abstract":"","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"38 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78746145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Briggs, Elizabeth A. Wommack, Sarah E. Sawtelle, C. Reynolds, A. Amar
{"title":"A Population Bottleneck Did Not Affect Polymorphism Rates in California Swainson's Hawks","authors":"C. Briggs, Elizabeth A. Wommack, Sarah E. Sawtelle, C. Reynolds, A. Amar","doi":"10.3356/JRR-22-52","DOIUrl":"https://doi.org/10.3356/JRR-22-52","url":null,"abstract":"Abstract. Raptor polymorphisms have played an important role in understanding how evolutionary forces within and between populations operate. However, within a population little is known about the history of the polymorphism, the effects of any population bottlenecks, and the overall stability of the polymorphism. We investigated the stability of a melanin-based color polymorphism in Swainson's Hawks (Buteo swainsoni) in California over a 100-year period. In the mid-20th century Swainson's Hawks in California declined by 90%. Therefore, we examined the morphs of breeding individuals collected before 1950 and compared them to images from eBird taken between 2008–2019 and from a Google Images search, because a disproportionate survival of rare alleles after a population bottleneck could lead to changes in current clines. Between the two periods, we did not find differences in plumage morphs, nor did we find evidence of latitude or longitudinal clines over this relatively small spatial scale. Thus, despite a large population decline, this polymorphism has remained consistent over time. Our results suggest that the relatively high occurrence of dark morphs in this population is not simply a result of a bottleneck. Resumen. Los polimorfismos observados en aves rapaces han jugado un papel importante en la comprensión de cómo operan las fuerzas evolutivas dentro y entre las poblaciones. Sin embargo, dentro de una población se sabe poco sobre la historia del polimorfismo, los efectos de los cuellos de botella poblacionales y la estabilidad general del polimorfismo. Investigamos la estabilidad de un polimorfismo de color dependiente de la presencia de melanina en Buteo swainsoni en California durante un período de 100 años. A mediados del siglo XX, los individuos de B. swainsoni en California se redujeron en un 90%. Por lo tanto, examinamos las morfologías de individuos reproductores recolectados antes de 1950 y las comparamos con imágenes de eBird tomadas entre 2008 y 2019 y de aquellas encontradas en Google, dado que una supervivencia desproporcionada de alelos raros después de un cuello de botella poblacional podría conducir a cambios en las clinas actuales. Entre los dos períodos, no encontramos diferencias en los morfos del plumaje, ni encontramos evidencia de clinas latitudinales o longitudinales a lo largo de esta escala espacial relativamente pequeña. Por lo tanto, a pesar de una gran disminución poblacional, este polimorfismo se ha mantenido constante a lo largo del tiempo. Nuestros resultados sugieren que la aparición relativamente alta de morfos oscuros en esta población no es simplemente el resultado de un cuello de botella. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"6 1","pages":"61 - 68"},"PeriodicalIF":1.7,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84748665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wolverine (Gulo gulo) Recorded as Predator of Nestling Great Gray Owls (Strix nebulosa) in Norway","authors":"R. Solheim, Sondre Englund Brenni","doi":"10.3356/JRR-22-36","DOIUrl":"https://doi.org/10.3356/JRR-22-36","url":null,"abstract":"The Great Gray Owl (Strix nebulosa) has a circumpolar distribution in the boreal forest zone (Cramp 1985) in both the Palearctic and Nearctic region (subspecies S. n. lapponica and S. n. nebulosi, respectively). The Palearctic subspecies has extended its range toward the south and southwest in Scandinavia during the last four decades (Sonerud et al. 2021 and references therein). This expansion includes most of northern Europe (Ławicki et al. 2013). Since 2009, at least 445 nesting attempts were recorded in Hedmark County, Norway (Berg et al. 2011, Berg 2016, Berg et al. 2019). The wolverine (Gulo gulo) is the largest member of the mustelid family, weighing up to 18 kg (Wilson and Mittermeier 2009). It inhabits the taiga in both Eurasia and North America (Wilson and Mittermeier 2009). The wolverine is capable of killing large ungulates such as reindeer (Rangifer tarandus), but it is generally an opportunistic feeder that regularly scavenges on carcasses (Wilson and Mittermeier 2009). Wolverines have bred in the northern half of Hedmark County since 2010, when the Great Gray Owl expansion started (Flagstad et al. 2013, Tovmo and Mattisson 2021). The southernmost known wolverine dens are in the same area as four Great Gray Owl platforms surveyed in 2021 (Fig. 1). Nest predation is a common cause of mortality for many bird species (Caro 2005 and references therein). Mustelids prey on both mammals and birds (Wilson and Mittermeier 2009), and European pine martens (Martes martes) are especially arboreal and known predators of cavity-nesting owls and ducks (Korpimäki and Hakkarainen 2012, Sonerud 1985, 2021a, 2021b). A few Great Gray Owls have made nesting attempts at ground nests in Hedmark County and all have been predated (Berg et al. 2011). Since 2011, an increasing number of artificial nest platforms (see Stefansson 1997, Solheim 2014) have been erected by local ornithologists in Hedmark County, resulting in .400 platforms installed by 2022 and 48% of nesting attempts occurring on platforms in 2018 (Berg et al. 2019). Here we report the first record of wolverine as a nest predator of Great Gray Owl nestlings on nest platforms. Four Great Gray Owl nests on artificial platforms were monitored with wildlife cameras in central Hedmark County in southeastern Norway (60851N, 11859E) in May and June 2021 (Fig. 1). The platforms surveilled were located along the Kynna watercourse in central Hedmark County, with 31.6 km between the two most-distant platforms, platform 1 and platform 4. Platforms were placed approximately 5.5 m above ground in pine (Pinus sylvestris) or spruce (Picea abies) trees. Three of the platforms (platforms 2, 3, and 4) were used by nesting Great Gray Owls in previous years. Seven wildlife cameras were erected to monitor the platforms. Camera types included Boscon Guard Entry (n1⁄4 3), Spypoint Force Dark (n1⁄4 2), Moultrie No-glow (n1⁄4 1), and Glory LTE, L4-E (n1⁄4 1). The cameras were mounted on tree trunks 2–5 m from the platforms","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"15 1","pages":"116 - 120"},"PeriodicalIF":1.7,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89554160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Range Contraction of an Osprey Population Following Lethal Control at a State Fish Hatchery in Montana","authors":"M. Restani","doi":"10.3356/JRR-22-30","DOIUrl":"https://doi.org/10.3356/JRR-22-30","url":null,"abstract":"Abstract. Human-Osprey (Pandion haliaetus) conflicts are increasing as the species rebounds from the negative effects of DDT. Ospreys forage at aquaculture facilities in North America, South America, and Europe, where nonlethal and lethal control are used to reduce depredations. Under the authority of a federal depredation permit, personnel at a state-owned fish hatchery in Montana shot eight Ospreys from 2018–2020 to reduce loss of brood stock largemouth bass (Micropterus salmoides). Independent long-term data (2012–2022) of Osprey breeding ecology along the Yellowstone River, which included the hatchery, afforded a rare opportunity to examine nest occupancy and reproductive success of the local population before, during, and following lethal control. The local breeding population of Ospreys collapsed by 2021 and the breeding range contracted 48–67 km during and after shooting. Shooting at the hatchery was the greatest source of Osprey mortality on the 950-km linear study area. In 2021, an informal working group of diverse stakeholders began meeting to develop nonlethal methods to reduce Osprey depredations at the hatchery. Resumen. Los conflictos entre humanos y Pandion haliaetus aumentan a medida que la especie se recupera de los efectos negativos del DDT. P. haliaetus se alimenta en instalaciones acuícolas en América del Norte, América del Sur y Europa, donde se utilizan controles no letales y letales para reducir las depredaciones. Bajo la autoridad de un permiso federal de control, el personal de una piscifactoría de propiedad estatal en Montana disparó contra ocho individuos de P. haliaetus entre 2018 y 2020 para reducir la pérdida de reproductores de Micropterus salmoides. Los datos independientes a largo plazo (2012–2022) de la ecología reproductiva de P. haliaetus a lo largo del Río Yellowstone, que incluía la piscifactoría, proporcionaron una rara oportunidad para examinar la ocupación del nido y el éxito reproductivo de la población local antes, durante y después del control letal. La población reproductora local de P. haliaetus colapsó en 2021 y el área de reproducción se contrajo de 48 a 67 km durante y después de los disparos. Los disparos en la piscifactoría fueron la mayor fuente de mortalidad de P. haliaetus en el área de estudio lineal de 950 km. En 2021, un grupo de trabajo informal de diversas partes interesadas comenzó a reunirse para desarrollar métodos no letales para reducir las depredaciones de P. haliaetus en la piscifactoría. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"2 1","pages":"69 - 74"},"PeriodicalIF":1.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84879445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madeline A. Dykstra, Donna M. Marain, A. Wrona, C. Dykstra, H. Farrington, Jeff Johnson, A. Wegman, Melinda M. Simon, Jeffrey L. Hays
{"title":"Genetic Differentiation of the South Florida Red-Shouldered Hawk (Buteo lineatus extimus) from the Nominate Subspecies (Buteo lineatus lineatus)","authors":"Madeline A. Dykstra, Donna M. Marain, A. Wrona, C. Dykstra, H. Farrington, Jeff Johnson, A. Wegman, Melinda M. Simon, Jeffrey L. Hays","doi":"10.3356/JRR-22-83","DOIUrl":"https://doi.org/10.3356/JRR-22-83","url":null,"abstract":"Abstract. The south Florida subspecies of the Red-shouldered Hawk (Buteo lineatus extimus) is distinctly paler and smaller than other subspecies, reproduces at a lower rate, and can occupy very different habitats such as open marshes and grasslands with only scattered trees. We evaluated population differentiation between the south Florida population of Red-shouldered Hawks and two populations of eastern Red-shouldered Hawks (B. l. lineatus) in suburban (Cincinnati) and rural (Hocking Hills) environments in southern Ohio. Based on analysis of 11 microsatellite loci, we found significant genetic differentiation between the south Florida and eastern populations (FST = 0.077–0.097), as well as significant differentiation between the two populations of the eastern subspecies (FST = 0.047). Standardized genetic distance principal components analysis indicated two clusters, with individuals from the two Ohio populations forming a single cluster and those from Florida forming a second cluster. The substantial differences between the south Florida and other subspecies suggest this population warrants attention and possibly management as a distinct conservation unit, particularly in light of possible threats including habitat loss and rodenticide exposure. Resumen. La subespecie del sur de Florida Buteo lineatus extimus es claramente más pálida y más pequeña que otras subespecies, se reproduce a un ritmo menor y puede ocupar hábitats muy diferentes, como marismas abiertas y pastizales con solo árboles dispersos. Evaluamos la diferenciación poblacional entre la población de B. l. extimus del sur de Florida y dos poblaciones orientales de B. l. lineatus de ambientes suburbanos (Cincinnati) y rurales (Hocking Hills) en el sur de Ohio. Con base en el análisis de 11 loci de microsatélites, encontramos una diferenciación genética significativa entre las poblaciones del sur de Florida y las orientales (FST = 0.077–0.097), así como una diferenciación significativa entre las dos poblaciones de la subespecie oriental (FST = 0.047). El análisis estandarizado de componentes principales de la distancia genética mostró dos grupos, con individuos de las dos poblaciones de Ohio formando un solo grupo y aquellos de Florida formando un segundo grupo. Las diferencias sustanciales entre el sur de Florida y otras subespecies sugieren que esta población merece atención y posiblemente manejo como una unidad de conservación distinta, particularmente a la luz de las posibles amenazas que incluyen la pérdida de hábitat y la exposición a rodenticidas. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"1 1","pages":"52 - 60"},"PeriodicalIF":1.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89268762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clément Daboné, A. Ouéda, J. B. Adjakpa, P. Weesie
{"title":"Breeding Behavior of the Hooded Vulture (Necrosyrtes monachus) in the Sudano-Sahelian Area (Garango, Burkina Faso)","authors":"Clément Daboné, A. Ouéda, J. B. Adjakpa, P. Weesie","doi":"10.3356/JRR-21-38","DOIUrl":"https://doi.org/10.3356/JRR-21-38","url":null,"abstract":"Abstract. Knowledge of Hooded Vulture (Necrosyrtes monachus) breeding behavior is important for monitoring purposes and to understand factors that may impact their breeding rates. In this study, we describe the breeding behavior of 65 Hooded Vulture pairs during two breeding seasons (2013/2014 and 2014/2015) in the Sudano-Sahelian area, Garango, in central-eastern Burkina Faso. The main behavioral patterns examined were aerial displays, copulation, nest building, incubation, nestling-rearing, and nest attendance. Hooded Vultures appeared highly selective with regard to nesting tree selection (91% of the 65 nests were in one of three species: Parkia biglobosa, Faidherbia albida, and Tamarindus indica). The breeding period of 65 pairs of Hooded Vultures spanned approximately 8 mo from egg-laying to fledging of the young. The constructed nests included a variety of human-made waste (plastic, paper, paperboard, and rags). Incubation lasted 48.1 ± 2.0 (SD) d for 18 hatched eggs. Juveniles continued receiving food from their parents on the nesting site for at least 38 d after fledging, and stayed with their parents for >5 mo post-fledging. Aerial displays were frequently performed by Hooded Vultures in pairs (two adults) or in threes (two adults with juvenile) and those observed early in the breeding season were considered to be courtship displays. Both sexes contributed to nest building and incubation tasks, and nestlings were relatively well attended by parents at all times of the day during the first weeks. Hooded Vultures produced 0.70 fledged young per nest where eggs were laid, or 0.57 fledged young per territorial pair. Hooded Vultures have a relatively healthy reproductive rate, but remain threatened primarily by direct human persecution. Local protection of Hooded Vultures in this area should be strengthened by public awareness campaigns to safeguard the population's long-term persistence. Resumen. Conocer el comportamiento reproductor de Necrosyrtes monachus es importante para fines de seguimiento y para comprender los factores que pueden afectar sus tasas reproductivas. En este estudio, describimos el comportamiento reproductor de 65 parejas de N. monachus durante dos temporadas de cría (2013/2014 y 2014/2015) en el área sudano-saheliana, Garango, centro-este de Burkina Faso. Los principales patrones de comportamiento examinados fueron las exhibiciones aéreas, la cópula, la construcción del nido, la incubación, la crianza de los polluelos y la asistencia al nido. Los individuos de N. monachus parecieron ser muy selectivos con respecto a la selección de árboles para anidar (91% de los 65 nidos estaban en una de las siguientes especies: Parkia biglobosa, Faidherbia albida y Tamarindus indica). El período reproductor de las 65 parejas abarcó aproximadamente 8 meses, desde la puesta de huevos hasta el emplumamiento de las crías. Los nidos construidos incluyeron una variedad de desechos antropogénicos (plástico, papel, cartón y trapos). La incuba","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"56 1","pages":"30 - 43"},"PeriodicalIF":1.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84559255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anjolene R. Hunt, Jesse L. Watson, Jason M. Winiarski, Ron R. Porter, Julie A. Heath
{"title":"American Kestrel Migration: Insights and Challenges from Tracking Individuals across the Annual Cycle","authors":"Anjolene R. Hunt, Jesse L. Watson, Jason M. Winiarski, Ron R. Porter, Julie A. Heath","doi":"10.3356/jrr-22-05","DOIUrl":"https://doi.org/10.3356/jrr-22-05","url":null,"abstract":"La variación natural en las estrategias migratorias de Falco sparverius a través de su área de distribución proporciona una oportunidad única para la investigación comparativa de los ciclos anuales. Sin embargo, puede ser un desafío logístico y técnico rastrear una especie tan pequeña pero altamente móvil. Marcamos individuos de F. sparverius con geolocalizadores de nivel de luz o transmisores satelitales con el objetivo de estimar el tiempo de migración y la conectividad. Igualmente, un subconjunto de individuos fue seguido con emisores satelitales durante la temporada reproductiva para evaluar la función y el desgaste del transmisor. Recuperamos geolocalizadores de seis de los 49 (12%) individuos marcados. Un individuo marcado con un geolocalizador migró aproximadamente 1235 km desde su área de reproducción en Idaho hasta la frontera de Nuevo México y Arizona durante el invierno y regresó a Idaho la primavera siguiente. Los otros cinco individuos recapturados permanecieron durante todo el año cerca (<200 km) de sus lugares de cría. La baja fiabilidad de la recuperación y la baja precisión de las ubicaciones sugirieron importantes limitaciones en el uso de geolocalizadores para rastrear esta especie. La mayoría de los transmisores satelitales (18 de 22, 82%) fallaron antes de la migración, pero un individuo seguido con satélite migró aproximadamente 5945 km desde Canadá a Nicaragua, y otros tres transmitieron ≥1 ubicación durante la migración. Los transmisores dejaron de funcionar mientras estaban en individuos vivos a pesar de no mostrar daños visibles y de mantener niveles de batería adecuados. Estos resultados sugieren que se necesitan más pruebas y desarrollo antes de que estos emisores desarrollados recientemente sean colocados nuevamente en F. sparverius. Ambos individuos con rutas migratorias completas mostraron evidencia de movimientos post-reproductivos de corta distancia (250–350 km) hacia sitios de parada en el sur donde permanecieron de uno a tres meses antes de seguir migrando. Aunque los tamaños de muestra fueron pequeños, los patrones migratorios fueron consistentes con los patrones de “salto de rana” latitudinales descritos en estudios previos y mostraron un patrón interesante de una escala post-reproductiva prolongada antes de una migración más larga. Además, la ruta de migración de Canadá a Nicaragua representa la ruta de migración más larga registrada para esta especie. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135392679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}