{"title":"Population Size in Evolutionary Biology Is More Than the Effective Size","authors":"Joachim Mergeay","doi":"10.1111/eva.70029","DOIUrl":"10.1111/eva.70029","url":null,"abstract":"<p>In population genetics idealized Wright-Fisher (WF) populations are generally considered equivalent to real populations with regard to the major evolutionary processes that influence genotype and allele frequencies. As a result we often model the response of populations by focusing on the effective size <i>N</i><sub><i>e</i></sub>. The Diversity Partitioning Theorem (DPT) shows that you cannot model the behavior of a system solely on the basis of a diversity (accounting for unevenness among items) without taking richness into account. I show that the census population size (the number of adults, <i>N</i><sub><i>c</i></sub>) is equivalent to a richness, and that the effective size <i>N</i><sub><i>e</i></sub> is equivalent to a true diversity. It follows logically from the DPT that we require both <i>N</i><sub><i>e</i></sub> and <i>N</i><sub><i>c</i></sub> to understand how drift, selection, mutation, and gene flow interact to shape the course of evolution of populations. Here I review evidence that both <i>N</i><sub><i>c</i></sub> and <i>N</i><sub><i>e</i></sub> affect evolutionary trajectories of populations for neutral and adaptive processes. This also influences how we should consider evolutionary potential and genetic criteria for conservation of populations. The effective size of a population is of huge importance in evolutionary biology, but it should not be the sole focus when population size is concerned. Applied evolutionary studies need to integrate <i>N</i><sub><i>c</i></sub> in the equation more consistently when modeling the response to selection, mutation, migration, and drift.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arman N. Pili, Nathan H. Schumaker, Morelia Camacho-Cervantes, Reid Tingley, David G. Chapple
{"title":"Landscape Heterogeneity and Environmental Dynamics Improve Predictions of Establishment Success of Colonising Small Founding Populations","authors":"Arman N. Pili, Nathan H. Schumaker, Morelia Camacho-Cervantes, Reid Tingley, David G. Chapple","doi":"10.1111/eva.70027","DOIUrl":"10.1111/eva.70027","url":null,"abstract":"<p>In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model amphibian species, the cane toad (<i>Rhinella marina</i>), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) the number of dispersal events, (3) landscape's spatial composition and configuration of habitats (‘spatially heterogeneous landscapes’) and (4) the timing of arrival with regards to dynamic environmental conditions (‘dynamic environmental conditions’) influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using running-window logistic regression models. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 founding individuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when they arrive in ‘packed’ landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding species reintroduction efforts and invasive alien species management.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonja J. Scheffer, Matthew L. Lewis, Norma Mujica, Charles MacVean, Helga Blanco-Metzler, Ravindra C. Joshi, Frode Jacobsen
{"title":"Peruvian origin and global invasions of five continents by the highly damaging agricultural pest Liriomyza huidobrensis (Diptera: Agromyzidae)","authors":"Sonja J. Scheffer, Matthew L. Lewis, Norma Mujica, Charles MacVean, Helga Blanco-Metzler, Ravindra C. Joshi, Frode Jacobsen","doi":"10.1111/eva.13702","DOIUrl":"10.1111/eva.13702","url":null,"abstract":"<p>Identification of the geographic origin of invasive species can be critical to effective management and amelioration of negative impacts in the introduced range. <i>Liriomyza huidobrensis</i> is a polyphagous leafmining fly that is a devastating pest of many vegetable and floriculture crops around the world. Considered native to South and possibly Central America, <i>L. huidobrensis</i> became invasive in the 1980s and has since spread to at least 30 countries on five continents. We used phylogeographic analysis of over 2 kb of mitochondrial cytochrome oxidase I and II sequence data from 403 field-collected specimens from both native and introduced populations to investigate the geographic origins of invasive <i>L. huidobrensis</i> worldwide. Within South America, there was substantial genetic variation, as well as the strong phylogeographic structure typical of a native range. In contrast, leafminers from the introduced range and Central America all contained little genetic variation and shared the same small set of haplotypes. These haplotypes trace to Peru as the ultimate geographic origin of invasive populations. Central America is rejected as part of the original geographic range of <i>L. huidobrensis.</i> Within Peru, the primary export region of Lima shared an extremely similar pattern of reduced haplotype variation to the invasive populations. An additional 18 specimens collected at US ports of entry did not share the same haplotype profile as contemporary invasive populations, raising perplexing questions on global pathways and establishment success in this species.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Baltazar-Soares, Alice Balard, Melanie J. Heckwolf
{"title":"Epigenetic Diversity and the Evolutionary Potential of Wild Populations","authors":"Miguel Baltazar-Soares, Alice Balard, Melanie J. Heckwolf","doi":"10.1111/eva.70011","DOIUrl":"10.1111/eva.70011","url":null,"abstract":"<p>Fast-paced selective pressures imposed by climate change and anthropogenic activities call for adaptive evolutionary responses to emerge at ecological timescales. However, the evolution and heritability of genomic variation underlie mechanistic constraints, which dictate a slower pace of adaptation exclusively relying on standing genetic variation and novel mutations. Environmentally responsive epigenetic mechanisms can allow acclimatisation and adaptive phenotypes to arise faster than DNA sequence-based mechanisms alone. Nevertheless, the knowledge gap between identifying epigenetic marks and effectively deeming them functional is still wide in a natural context and often outside the scope of model organisms. With this Special Issue, we aimed to narrow this gap by presenting a compilation of original research articles, reviews and opinions on the topic of epigenetics in wild populations. We contextualised this collection within the overarching topic of conservation biology, as we firmly propose that epigenetic research can significantly enhance the effectiveness of conservation measures. Contributions highlighted the putative role of epigenetic variation in the acclimatisation and adaptive potential of species and populations directly and indirectly affected by climatic shifts and anthropogenic actions. They further exemplified how epigenetic variation can be used as biomarkers for monitoring variations in physiology, phenology and behaviour. Lastly, reviews and perspective articles illustrated the past and present of epigenetic research in wild populations while suggesting future research avenues.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathilde Salamon, Louis Astorg, Antoine Paccard, Frederic Chain, Andrew P. Hendry, Alison M. Derry, Rowan D. H. Barrett
{"title":"Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator","authors":"Mathilde Salamon, Louis Astorg, Antoine Paccard, Frederic Chain, Andrew P. Hendry, Alison M. Derry, Rowan D. H. Barrett","doi":"10.1111/eva.70004","DOIUrl":"10.1111/eva.70004","url":null,"abstract":"<p>Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod <i>Amnicola limosus</i> is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (<i>Neogobius melanostomus</i>, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of <i>A. limosus</i> to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F<sub>0</sub> <i>A. limosus</i> sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laia Pérez-Sorribes, Pau Villar-Yanez, Linnéa Smeds, Joachim Mergeay
{"title":"Comparing Genetic Ne Reconstructions Over Time With Long-Time Wolf Monitoring Data in Two Populations","authors":"Laia Pérez-Sorribes, Pau Villar-Yanez, Linnéa Smeds, Joachim Mergeay","doi":"10.1111/eva.70022","DOIUrl":"https://doi.org/10.1111/eva.70022","url":null,"abstract":"<p>Many methods are now available to calculate <i>N</i><sub><i>e</i></sub>, but their performance varies depending on assumptions. Although simulated data are useful to discover certain types of bias, real empirical data supported by detailed known population histories allow us to discern how well methods perform with actual messy and complex data. Here, we focus on two genomic data sets of grey wolf populations for which population size changes of the past 40–120 years are well documented. We use this background to explore in what detail we can retrieve the known population history from these populations, in the light of pitfalls relating to population history, sampling design and the change in the spatial scale at which <i>N</i><sub><i>e</i></sub> is estimated as we go further back in time. The Scandinavian wolf population was founded in the early 1980s from a few individuals and has gradually expanded up to 510 wolves. Although the founder event of the Scandinavian population was detected by GONE, the founding effective population size was strongly overestimated when the most recent samples were used, but less so when older samples were considered. Nevertheless, the present-day <i>N</i><sub><i>e</i></sub> corresponds to theoretical expectations. The western Great Lakes wolf population of Minnesota is the only population in the contiguous United States that persisted throughout the 20th century, surviving intense persecution. We found a good concordance between the estimated <i>N</i><sub><i>e</i></sub> and trends in census size data, but the reconstruction of <i>N</i><sub><i>e</i></sub> clearly highlights the difficulty of interpreting results in spatially structured populations that underwent demographic fluctuations.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam M. Fisher, Amelia-Rose V. McKenzie, Tom A. R. Price, Michael B. Bonsall, Robert J. Knell
{"title":"Do Sex Ratio Distorting Microbes Inhibit the Evolution of Pesticide Resistance? An Experimental Test","authors":"Adam M. Fisher, Amelia-Rose V. McKenzie, Tom A. R. Price, Michael B. Bonsall, Robert J. Knell","doi":"10.1111/eva.70003","DOIUrl":"https://doi.org/10.1111/eva.70003","url":null,"abstract":"<p>We are still largely reliant on pesticides for the suppression of arthropod pests which threaten human health and food production, but the recent rise of evolved resistance among important pest species has reduced pesticide efficacy. Despite this, our understanding of strategies that effectively limit the evolution of resistance remains weak. Male-killing sex ratio distorting microbes (SRDMs), such as <i>Wolbachia</i> and <i>Spiroplasma</i>, are common among arthropod species. Previous theoretical work has suggested that they could limit adaptive potential in two ways: first, because by distorting sex ratios they reduce the effective population size, and second, because infected females produce no male offspring which restricts gene flow. Here we present the results of a novel experiment in which we test the extent by which these two mechanisms limit the adaptive response of arthropods to pesticide. Using a fully factorial design, we manipulated the adult sex ratio of laboratory populations of <i>Drosophila melanogaster</i>, both in the presence and absence of SRDMs, and exposed these populations to six generations of pesticide poisoning. This design allows the effects of SRDMs on sex ratio and their effects on gene flow to be estimated separately. After six generations, individuals from populations with even sex ratios displayed a higher resistance to pesticide relative to individuals from female-biased populations. By contrast, we found no effect of the presence of SRDMs in host populations on pesticide resistance independent of sex ratio. In addition, males were more susceptible to pesticide than females—this was true of flies from both naïve and previously exposed populations. These findings provide the first empirical proof of concept that sex ratio distortion arising from SRDMs can limit adaptation to pesticides, but cast doubt on the theoretical effect of male-killers limiting adaptation by disrupting gene flow.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selina B. I. Schmidt, Tom Täschner, Niclas Nordholt, Frank Schreiber
{"title":"Differential Selection for Survival and for Growth in Adaptive Laboratory Evolution Experiments With Benzalkonium Chloride","authors":"Selina B. I. Schmidt, Tom Täschner, Niclas Nordholt, Frank Schreiber","doi":"10.1111/eva.70017","DOIUrl":"https://doi.org/10.1111/eva.70017","url":null,"abstract":"<p>Biocides are used to control microorganisms across different applications, but emerging resistance may pose risks for those applications. Resistance to biocides has commonly been studied using adaptive laboratory evolution (ALE) experiments with growth at subinhibitory concentrations linked to serial subculturing. It has been shown recently that <i>Escherichia coli</i> adapts to repeated lethal stress imposed by the biocide benzalkonium chloride (BAC) by increased survival (i.e., tolerance) and not by evolving the ability to grow at increased concentrations (i.e., resistance). Here, we investigate the contributions of evolution for tolerance as opposed to resistance for the outcome of ALE experiments with <i>E. coli</i> exposed to BAC. We find that BAC concentrations close to the half maximal effective concentration (EC<sub>50</sub>, 4.36 μg mL<sup>−1</sup>) show initial killing (~40%) before the population resumes growth. This indicates that cells face a two-fold selection pressure: for increased survival and for increased growth. To disentangle the effects of both selection pressures, we conducted two ALE experiments: (i) one with initial killing and continued stress close to the EC<sub>50</sub> during growth and (ii) another with initial killing and no stress during growth. Phenotypic characterization of adapted populations showed that growth at higher BAC concentrations was only selected for when BAC was present during growth. Whole genome sequencing revealed distinct differences in mutated genes across treatments. Treatments selecting for survival-only led to mutations in genes for metabolic regulation (<i>cyaA</i>) and cellular structure (flagella <i>fliJ</i>), while treatments selecting for growth and survival led to mutations in genes related to stress response (<i>hslO</i> and <i>tufA</i>). Our results demonstrate that serial subculture ALE experiments with an antimicrobial at subinhibitory concentrations can select for increased growth and survival. This finding has implications for the design of ALE experiments to assess resistance risks of antimicrobials in different scenarios such as disinfection, preservation, and environmental pollution.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Pavlova, Luke Pearce, Felicity Sturgiss, Erin Lake, Paul Sunnucks, Mark Lintermans
{"title":"Immediate Genetic Augmentation and Enhanced Habitat Connectivity Are Required to Secure the Future of an Iconic Endangered Freshwater Fish Population","authors":"Alexandra Pavlova, Luke Pearce, Felicity Sturgiss, Erin Lake, Paul Sunnucks, Mark Lintermans","doi":"10.1111/eva.70019","DOIUrl":"https://doi.org/10.1111/eva.70019","url":null,"abstract":"<p>Genetic diversity is rapidly lost from small, isolated populations by genetic drift. Measuring the level of genetic drift using effective population size (<i>N</i><sub>e</sub>) is highly useful for management. Single-cohort genetic <i>N</i><sub>e</sub> estimators approximate the number of breeders in one season (<i>N</i><sub>b</sub>): a value < 100 signals likely inbreeding depression. Per-generation <i>N</i><sub>e</sub> < 1000 estimated from multiple cohort signals reduced adaptive potential. Natural populations rarely meet assumptions of <i>N</i><sub>e</sub>-estimation, so interpreting estimates is challenging. Macquarie perch is an endangered Australian freshwater fish threatened by severely reduced range, habitat loss, and fragmentation. To counteract low <i>N</i><sub>e</sub>, augmented gene flow is being implemented in several populations. In the Murrumbidgee River, unknown effects of water management on among-site connectivity impede the design of effective interventions. Using DArT SNPs for 328 Murrumbidgee individuals sampled across several sites and years with different flow conditions, we assessed population structure, site isolation, heterozygosity, inbreeding, and <i>N</i><sub>e</sub>. We tested for inbreeding depression, assessed genetic diversity and dispersal, and evaluated whether individuals translocated from Cataract Reservoir to the Murrumbidgee River bred, and interbred with local fish. We found strong genetic structure, indicating complete or partial isolation of river fragments. This structure violates assumptions of <i>N</i><sub>e</sub> estimation, resulting in strongly downwardly biased <i>N</i><sub>b</sub> estimates unless assessed per-site, highlighting the necessity to account for population structure while estimating <i>N</i><sub>e</sub>. Inbreeding depression was not detected, but with low <i>N</i><sub>b</sub> at each site, inbreeding and inbreeding depression are likely. These results flagged the necessity to address within-river population connectivity through flow management and genetic mixing through translocations among sites and from other populations. Three detected genetically diverse offspring of a translocated Cataract fish and a local parent indicated that genetic mixing is in progress. Including admixed individuals in estimates yielded lower <i>N</i><sub>e</sub> but higher heterozygosity, suggesting heterozygosity is a preferable indicator of genetic augmentation.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chrystelle Delord, Sophie Arnaud-Haond, Agostino Leone, Jonathan Rolland, Natacha Nikolic
{"title":"Unraveling the Complexity of the Ne/Nc Ratio for Conservation of Large and Widespread Pelagic Fish Species: Current Status and Challenges","authors":"Chrystelle Delord, Sophie Arnaud-Haond, Agostino Leone, Jonathan Rolland, Natacha Nikolic","doi":"10.1111/eva.70020","DOIUrl":"10.1111/eva.70020","url":null,"abstract":"<p>Estimating and understanding the ratio between effective population size (<i>N</i><sub>e</sub>) and census population size (<i>N</i><sub>c</sub>) are pivotal in the conservation of large marine pelagic fish species, including bony fish such as tunas and cartilaginous fish such as sharks, given the challenges associated with obtaining accurate estimates of their abundance. The difficulties inherent in capturing and monitoring these species in vast and dynamic marine environments often make direct estimation of their population size challenging. By focusing on <i>N</i><sub>e</sub>, it is conceivable in certain cases to approximate census size once the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio is known, although this ratio can vary and does not always increase linearly, as it is influenced by various ecological and evolutionary factors. Thus, this ratio presents challenges and complexities in the context of pelagic species conservation. To delve deeper into these challenges, firstly, we recall the diverse types of effective population sizes, including contemporary and historical sizes, and their implications in conservation biology. Secondly, we outline current knowledge about the influence of life history traits on the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio in the light of examples drawn from large and abundant pelagic fish species. Despite efforts to document an increasing number of marine species using recent technologies and statistical methods, establishing general rules to predict <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> remains elusive, necessitating further research and investment. Finally, we recall statistical challenges in relating <i>N</i><sub>e</sub> and <i>N</i><sub>c</sub> emphasizing the necessity of aligning temporal and spatial scales. This last part discusses the roles of generation and reproductive cycle effective population sizes to predict genetic erosion and guiding management strategies. Collectively, these sections underscore the multifaceted nature of effective population size estimation, crucial for preserving genetic diversity and ensuring the long-term viability of populations. By navigating statistical and theoretical complexities, and addressing methodological challenges, scientists should be able to advance our understanding of the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}