Selina B. I. Schmidt, Tom Täschner, Niclas Nordholt, Frank Schreiber
{"title":"Differential Selection for Survival and for Growth in Adaptive Laboratory Evolution Experiments With Benzalkonium Chloride","authors":"Selina B. I. Schmidt, Tom Täschner, Niclas Nordholt, Frank Schreiber","doi":"10.1111/eva.70017","DOIUrl":"https://doi.org/10.1111/eva.70017","url":null,"abstract":"<p>Biocides are used to control microorganisms across different applications, but emerging resistance may pose risks for those applications. Resistance to biocides has commonly been studied using adaptive laboratory evolution (ALE) experiments with growth at subinhibitory concentrations linked to serial subculturing. It has been shown recently that <i>Escherichia coli</i> adapts to repeated lethal stress imposed by the biocide benzalkonium chloride (BAC) by increased survival (i.e., tolerance) and not by evolving the ability to grow at increased concentrations (i.e., resistance). Here, we investigate the contributions of evolution for tolerance as opposed to resistance for the outcome of ALE experiments with <i>E. coli</i> exposed to BAC. We find that BAC concentrations close to the half maximal effective concentration (EC<sub>50</sub>, 4.36 μg mL<sup>−1</sup>) show initial killing (~40%) before the population resumes growth. This indicates that cells face a two-fold selection pressure: for increased survival and for increased growth. To disentangle the effects of both selection pressures, we conducted two ALE experiments: (i) one with initial killing and continued stress close to the EC<sub>50</sub> during growth and (ii) another with initial killing and no stress during growth. Phenotypic characterization of adapted populations showed that growth at higher BAC concentrations was only selected for when BAC was present during growth. Whole genome sequencing revealed distinct differences in mutated genes across treatments. Treatments selecting for survival-only led to mutations in genes for metabolic regulation (<i>cyaA</i>) and cellular structure (flagella <i>fliJ</i>), while treatments selecting for growth and survival led to mutations in genes related to stress response (<i>hslO</i> and <i>tufA</i>). Our results demonstrate that serial subculture ALE experiments with an antimicrobial at subinhibitory concentrations can select for increased growth and survival. This finding has implications for the design of ALE experiments to assess resistance risks of antimicrobials in different scenarios such as disinfection, preservation, and environmental pollution.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Pavlova, Luke Pearce, Felicity Sturgiss, Erin Lake, Paul Sunnucks, Mark Lintermans
{"title":"Immediate Genetic Augmentation and Enhanced Habitat Connectivity Are Required to Secure the Future of an Iconic Endangered Freshwater Fish Population","authors":"Alexandra Pavlova, Luke Pearce, Felicity Sturgiss, Erin Lake, Paul Sunnucks, Mark Lintermans","doi":"10.1111/eva.70019","DOIUrl":"https://doi.org/10.1111/eva.70019","url":null,"abstract":"<p>Genetic diversity is rapidly lost from small, isolated populations by genetic drift. Measuring the level of genetic drift using effective population size (<i>N</i><sub>e</sub>) is highly useful for management. Single-cohort genetic <i>N</i><sub>e</sub> estimators approximate the number of breeders in one season (<i>N</i><sub>b</sub>): a value < 100 signals likely inbreeding depression. Per-generation <i>N</i><sub>e</sub> < 1000 estimated from multiple cohort signals reduced adaptive potential. Natural populations rarely meet assumptions of <i>N</i><sub>e</sub>-estimation, so interpreting estimates is challenging. Macquarie perch is an endangered Australian freshwater fish threatened by severely reduced range, habitat loss, and fragmentation. To counteract low <i>N</i><sub>e</sub>, augmented gene flow is being implemented in several populations. In the Murrumbidgee River, unknown effects of water management on among-site connectivity impede the design of effective interventions. Using DArT SNPs for 328 Murrumbidgee individuals sampled across several sites and years with different flow conditions, we assessed population structure, site isolation, heterozygosity, inbreeding, and <i>N</i><sub>e</sub>. We tested for inbreeding depression, assessed genetic diversity and dispersal, and evaluated whether individuals translocated from Cataract Reservoir to the Murrumbidgee River bred, and interbred with local fish. We found strong genetic structure, indicating complete or partial isolation of river fragments. This structure violates assumptions of <i>N</i><sub>e</sub> estimation, resulting in strongly downwardly biased <i>N</i><sub>b</sub> estimates unless assessed per-site, highlighting the necessity to account for population structure while estimating <i>N</i><sub>e</sub>. Inbreeding depression was not detected, but with low <i>N</i><sub>b</sub> at each site, inbreeding and inbreeding depression are likely. These results flagged the necessity to address within-river population connectivity through flow management and genetic mixing through translocations among sites and from other populations. Three detected genetically diverse offspring of a translocated Cataract fish and a local parent indicated that genetic mixing is in progress. Including admixed individuals in estimates yielded lower <i>N</i><sub>e</sub> but higher heterozygosity, suggesting heterozygosity is a preferable indicator of genetic augmentation.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chrystelle Delord, Sophie Arnaud-Haond, Agostino Leone, Jonathan Rolland, Natacha Nikolic
{"title":"Unraveling the Complexity of the Ne/Nc Ratio for Conservation of Large and Widespread Pelagic Fish Species: Current Status and Challenges","authors":"Chrystelle Delord, Sophie Arnaud-Haond, Agostino Leone, Jonathan Rolland, Natacha Nikolic","doi":"10.1111/eva.70020","DOIUrl":"10.1111/eva.70020","url":null,"abstract":"<p>Estimating and understanding the ratio between effective population size (<i>N</i><sub>e</sub>) and census population size (<i>N</i><sub>c</sub>) are pivotal in the conservation of large marine pelagic fish species, including bony fish such as tunas and cartilaginous fish such as sharks, given the challenges associated with obtaining accurate estimates of their abundance. The difficulties inherent in capturing and monitoring these species in vast and dynamic marine environments often make direct estimation of their population size challenging. By focusing on <i>N</i><sub>e</sub>, it is conceivable in certain cases to approximate census size once the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio is known, although this ratio can vary and does not always increase linearly, as it is influenced by various ecological and evolutionary factors. Thus, this ratio presents challenges and complexities in the context of pelagic species conservation. To delve deeper into these challenges, firstly, we recall the diverse types of effective population sizes, including contemporary and historical sizes, and their implications in conservation biology. Secondly, we outline current knowledge about the influence of life history traits on the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio in the light of examples drawn from large and abundant pelagic fish species. Despite efforts to document an increasing number of marine species using recent technologies and statistical methods, establishing general rules to predict <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> remains elusive, necessitating further research and investment. Finally, we recall statistical challenges in relating <i>N</i><sub>e</sub> and <i>N</i><sub>c</sub> emphasizing the necessity of aligning temporal and spatial scales. This last part discusses the roles of generation and reproductive cycle effective population sizes to predict genetic erosion and guiding management strategies. Collectively, these sections underscore the multifaceted nature of effective population size estimation, crucial for preserving genetic diversity and ensuring the long-term viability of populations. By navigating statistical and theoretical complexities, and addressing methodological challenges, scientists should be able to advance our understanding of the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Garazi Martin Bideguren, Orly Razgour, Antton Alberdi
{"title":"Quantitative Synthesis of Microbe-Driven Acclimation and Adaptation in Wild Vertebrates","authors":"Garazi Martin Bideguren, Orly Razgour, Antton Alberdi","doi":"10.1111/eva.70025","DOIUrl":"10.1111/eva.70025","url":null,"abstract":"<p>Microorganisms associated with animals harbour a unique set of functional traits pivotal for the normal functioning of their hosts. This realisation has led researchers to hypothesise that animal-associated microbial communities may boost the capacity of their hosts to acclimatise and adapt to environmental changes, two eco-evolutionary processes with significant applied relevance. Aiming to assess the importance of microorganisms for wild vertebrate conservation, we conducted a quantitative systematic review to evaluate the scientific evidence for the contribution of gut microorganisms to the acclimation and adaptation capacity of wild vertebrate hosts. After screening 1974 publications, we scrutinised the 109 studies that met the inclusion criteria based on 10 metrics encompassing study design, methodology and reproducibility. We found that the studies published so far were not able to resolve the contribution of gut microorganisms due to insufficient study design and research methods for addressing the hypothesis. Our findings underscore the limited application to date of microbiome knowledge in vertebrate conservation and management, highlighting the need for a paradigm shift in research approaches. Considering these results, we advocate for a shift from observational studies to experimental manipulations, where fitness or related indicators are measured, coupled with an update in molecular techniques used to analyse microbial functions. In addition, closer collaboration with conservation managers and practitioners from the inception of the project is needed to encourage meaningful application of microbiome knowledge in adaptive wildlife conservation management.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thaïs A. Bernos, Zdenek Lajbner, Petr Kotlík, Jacklyn M. Hill, Silvia Marková, Jonah Yick, Nicholas E. Mandrak, Ken M. Jeffries
{"title":"Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish","authors":"Thaïs A. Bernos, Zdenek Lajbner, Petr Kotlík, Jacklyn M. Hill, Silvia Marková, Jonah Yick, Nicholas E. Mandrak, Ken M. Jeffries","doi":"10.1111/eva.70006","DOIUrl":"10.1111/eva.70006","url":null,"abstract":"<p>Species invading non-native habitats can cause irreversible environmental damage and economic harm. Yet, how introduced species become widespread invaders remains poorly understood. Adaptation within native-range habitats and rapid adaptation to new environments may both influence invasion success. Here, we examine these hypotheses using 7058 SNPs from 36 native, 40 introduced and 19 farmed populations of tench, a fish native to Eurasia. We examined genetic structure among these populations and accounted for long-term evolutionary history within the native range to assess whether introduced populations exhibited lower genetic diversity than native populations. Subsequent to infer genotype–environment correlations within native-range habitats, we assessed whether adaptation to native environments may have shaped the success of some introduced populations. At the broad scale, two glacial refugia contributed to the ancestry and genomic diversity of tench. However, native, introduced and farmed populations of admixed origin exhibited up to 10-fold more genetic diversity (i.e., observed heterozygosity, expected heterozygosity and allelic richness) compared to populations with predominantly single-source ancestry. The effects of introduction to a new location were also apparent as introduced populations exhibited fewer private alleles (mean = 9.9 and 18.9 private alleles in introduced and native populations, respectively) and higher population-specific <i>Fst</i> compared to native populations, highlighting their distinctiveness relative to the pool of allelic frequencies across tench populations. Finally, introduced populations with varying levels of genetic variation and similar genetic compositions have become established and persisted under strikingly different climatic and ecological conditions. Our results suggest that lack of prior adaptation and low genetic variation may not consistently hinder the success of introduced populations for species with a demonstrated ability to expand their native range.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary L. Robinson, Jason A. Coombs, Mark Hudy, Keith H. Nislow, Andrew R. Whiteley
{"title":"Estimates of Effective Number of Breeders Identify Drivers of Decline in Mid-Atlantic Brook Trout Populations","authors":"Zachary L. Robinson, Jason A. Coombs, Mark Hudy, Keith H. Nislow, Andrew R. Whiteley","doi":"10.1111/eva.13769","DOIUrl":"10.1111/eva.13769","url":null,"abstract":"<p>Brook Trout (<i>Salvelinus fontinalis</i>) populations have experienced marked declines throughout their native range and are presently threatened due to isolation in small habitat fragments, land use changes, and climate change. The existence of numerous, spatially distinct populations poses substantial challenges for monitoring population status (e.g., abundance, recruitment, or occupancy). Genetic monitoring with estimates of effective number of breeders (<i>N</i><sub>b</sub>) provides a potentially powerful metric to complement existing population monitoring, assessment, and prioritization. We estimated <i>N</i><sub>b</sub> for 71 Brook Trout habitat units in mid-Atlantic region of the United States and obtained a mean <i>N</i><sub>b</sub> of 73.2 (range 6.90–493). Our modeling approach tested whether <i>N</i><sub>b</sub> estimates were sensitive to differences in habitat size, presence of non-native salmonids, base flow index, temperature, acidic precipitation, and indices of anthropogenic disturbance. We found significant support for three of our hypotheses including the positive influences of available habitat and base flow index and negative effect of temperature. Our results are consistent with presently observed and predicted future impacts of climate change on populations of this cold-water fish. Importantly, these findings support the use of <i>N</i><sub>b</sub> in population assessments as an index of relative population status.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia G. Costa, Sara Magalhães, Inês Santos, Flore Zélé, Leonor R. Rodrigues
{"title":"A Sex-Specific Trade-Off Between Pesticide Resistance and Tolerance to Heat-Induced Sterility in Tetranychus urticae","authors":"Sofia G. Costa, Sara Magalhães, Inês Santos, Flore Zélé, Leonor R. Rodrigues","doi":"10.1111/eva.70014","DOIUrl":"https://doi.org/10.1111/eva.70014","url":null,"abstract":"<p>Current pest management relies extensively on pesticide application worldwide, despite the frequent rise of pesticide resistance in crop pests. This is particularly worrisome because resistance is often not costly enough to be lost in populations after pesticide application, resulting in increased dependency on pesticide application. As climate warming increases, effort should be put into understanding how heat tolerance will affect the persistence of pesticide resistance in populations. To address this, we measured heat tolerance in two populations of the spider mite crop pest <i>Tetranychus urticae</i> that differ in the presence or absence of a target-site mutation conferring resistance to etoxazole pesticide. We found that developmental time and fertility, but not survival, were negatively affected by increasing temperatures in the susceptible population. Furthermore, we found no difference between resistant and susceptible populations in all life-history traits when both sexes developed at control temperature, nor when females developed at high temperature. Resistant heat-stressed males, in contrast, showed lower fertility than susceptible ones, indicating a sex-specific trade-off between heat tolerance and pesticide resistance. This suggests that global warming could lead to reduced pesticide resistance in natural populations. However, resistant females, being as affected by high temperature as susceptible individuals, may buffer the toll in resistant male fertility, and the shorter developmental time at high temperatures may accelerate adaptation to temperature, the pesticide or the cost thereof. Ultimately, the complex dynamic between these two factors will determine whether resistant populations can persist under climate warming.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonja Lečić, Thomas M. Wolfe, Animesh Ghosh, Serdar Satar, Camilla Souza Beraldo, Emily Smith, Jason J. Dombroskie, Emily Jernigan, Glen Ray Hood, Hannes Schuler, Christian Stauffer
{"title":"Spatially Varying Wolbachia Frequencies Reveal the Invasion Origin of an Agricultural Pest Recently Introduced From Europe to North America","authors":"Sonja Lečić, Thomas M. Wolfe, Animesh Ghosh, Serdar Satar, Camilla Souza Beraldo, Emily Smith, Jason J. Dombroskie, Emily Jernigan, Glen Ray Hood, Hannes Schuler, Christian Stauffer","doi":"10.1111/eva.70016","DOIUrl":"https://doi.org/10.1111/eva.70016","url":null,"abstract":"<p>The introduction of non-native species across the world represents a major global challenge. Retracing invasion origin is an important first step in understanding the invasion process, often requiring detailed sampling within the native range. Insect species frequently host <i>Wolbachia</i>, a widespread endosymbiotic bacterium that manipulates host reproduction to increase infected female fitness. Here, we draw on the spatial variation in infection frequencies of an actively spreading <i>Wolbachia</i> strain <i>w</i>Cer2 to investigate the invasion origin of the European cherry fruit fly, <i>Rhagoletis cerasi.</i> This pest of cherries was introduced from Europe to North America within the last decade. First, we screen the introduced fly population for the presence of <i>Wolbachia</i>. The introduced populations lack the <i>w</i>Cer2 strain and the strongly associated mitochondrial haplotype, suggesting strain absence due to founder effects with invading individuals originating from <i>w</i>Cer2-uninfected native population(s). To narrow down geographic regions of invasion origin, we perform spatial interpolation of the <i>w</i>Cer2 infection frequency across the native range and predict the infection frequency in unsampled regions. For this, we use an extensive dataset of <i>R. cerasi</i> infection covering 238 populations across Europe over 25 years, complemented with 14 additional populations analyzed for this study. We find that <i>R. cerasi</i> was unlikely introduced from <i>w</i>Cer2-infected populations in Central and Western Europe. We propose <i>w</i>Cer2-uninfected populations from Eastern Europe and the Mediterranean region as the most likely candidates for the invasion origin. This work utilizes <i>Wolbachia</i> as an indirect instrument to provide insights into the invasion source of <i>R. cerasi</i> in North America, revealing yet another application for this multifaceted heritable endosymbiont. Given the prevalence of biological invasions, rapidly uncovering invasion origins gives fundamental insights into how invasive species adapt to new environments.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert Kwait, Malin L. Pinsky, Sarah Gignoux-Wolfsohn, Evan A. Eskew, Kathleen Kerwin, Brooke Maslo
{"title":"Impact of putatively beneficial genomic loci on gene expression in little brown bats (Myotis lucifugus, Le Conte, 1831) affected by white-nose syndrome","authors":"Robert Kwait, Malin L. Pinsky, Sarah Gignoux-Wolfsohn, Evan A. Eskew, Kathleen Kerwin, Brooke Maslo","doi":"10.1111/eva.13748","DOIUrl":"https://doi.org/10.1111/eva.13748","url":null,"abstract":"<p>Genome-wide scans for selection have become a popular tool for investigating evolutionary responses in wildlife to emerging diseases. However, genome scans are susceptible to false positives and do little to demonstrate specific mechanisms by which loci impact survival. Linking putatively resistant genotypes to observable phenotypes increases confidence in genome scan results and provides evidence of survival mechanisms that can guide conservation and management efforts. Here we used an expression quantitative trait loci (eQTL) analysis to uncover relationships between gene expression and alleles associated with the survival of little brown bats (<i>Myotis lucifugus</i>) despite infection with the causative agent of white-nose syndrome. We found that 25 of the 63 single-nucleotide polymorphisms (SNPs) associated with survival were related to gene expression in wing tissue. The differentially expressed genes have functional annotations associated with the innate immune system, metabolism, circadian rhythms, and the cellular response to stress. In addition, we observed differential expression of multiple genes with survival implications related to loci in linkage disequilibrium with focal SNPs. Together, these findings support the selective function of these loci and suggest that part of the mechanism driving survival may be the alteration of immune and other responses in epithelial tissue.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Israël Tankam Chedjou, Josselin Montarry, Sylvain Fournet, Frédéric M. Hamelin
{"title":"Combining Masculinizing Resistance, Rotation, and Biocontrol to Achieve Durable Suppression of the Potato Pale Cyst Nematode: A Model","authors":"Israël Tankam Chedjou, Josselin Montarry, Sylvain Fournet, Frédéric M. Hamelin","doi":"10.1111/eva.70012","DOIUrl":"https://doi.org/10.1111/eva.70012","url":null,"abstract":"<p>The pale cyst nematode, <i>Globodera pallida</i>, is a pest that poses a significant threat to potato crops worldwide. The most effective chemical nematicides are toxic to nontarget organisms and are now banned. Alternative control methods are therefore required. Crop rotation and biological control methods have limitations for effectively managing nematodes. The use of genetically resistant cultivars is a promising alternative, but nematode populations evolve, and virulent mutants can break resistance after just a few years. Masculinizing resistances, preventing avirulent nematodes from producing females, might be more durable than blocking resistances, preventing infection. Our demo-genetic model, tracking both nematode population densities and virulence allele frequencies, shows that virulence against masculinizing resistance may not be fixed in the pest population under realistic agricultural conditions. Avirulence may persist despite the uniform use of resistance. This is because avirulent male nematodes may transmit avirulent alleles to their progeny by mating with virulent females. Additionally, because avirulent nematodes do not produce females themselves, they weaken the reproductive rate of the nematode population, leading to a reduction in its density by at least 20%. This avirulence load can even lead to the collapse of the nematode population in theory. Overall, our model showed that combining masculinizing resistance, rotation, and biocontrol may achieve durable suppression of <i>G. pallida</i> in a reasonable time frame. Our work is supported by an online interactive interface allowing users (i.e., growers, plant health authorities, researchers) to test their own control combinations.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}