Evolutionary Applications最新文献

筛选
英文 中文
Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator 从生理避难所的有限迁移限制了本地腹足类面对入侵捕食者时的救援。
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-21 DOI: 10.1111/eva.70004
Mathilde Salamon, Louis Astorg, Antoine Paccard, Frederic Chain, Andrew P. Hendry, Alison M. Derry, Rowan D. H. Barrett
{"title":"Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator","authors":"Mathilde Salamon,&nbsp;Louis Astorg,&nbsp;Antoine Paccard,&nbsp;Frederic Chain,&nbsp;Andrew P. Hendry,&nbsp;Alison M. Derry,&nbsp;Rowan D. H. Barrett","doi":"10.1111/eva.70004","DOIUrl":"10.1111/eva.70004","url":null,"abstract":"<p>Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod <i>Amnicola limosus</i> is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (<i>Neogobius melanostomus</i>, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of <i>A. limosus</i> to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F<sub>0</sub> <i>A. limosus</i> sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing Genetic Ne Reconstructions Over Time With Long-Time Wolf Monitoring Data in Two Populations 比较两个种群的长期狼监测数据与遗传 Ne 重建的时间关系
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-17 DOI: 10.1111/eva.70022
Laia Pérez-Sorribes, Pau Villar-Yanez, Linnéa Smeds, Joachim Mergeay
{"title":"Comparing Genetic Ne Reconstructions Over Time With Long-Time Wolf Monitoring Data in Two Populations","authors":"Laia Pérez-Sorribes,&nbsp;Pau Villar-Yanez,&nbsp;Linnéa Smeds,&nbsp;Joachim Mergeay","doi":"10.1111/eva.70022","DOIUrl":"https://doi.org/10.1111/eva.70022","url":null,"abstract":"<p>Many methods are now available to calculate <i>N</i><sub><i>e</i></sub>, but their performance varies depending on assumptions. Although simulated data are useful to discover certain types of bias, real empirical data supported by detailed known population histories allow us to discern how well methods perform with actual messy and complex data. Here, we focus on two genomic data sets of grey wolf populations for which population size changes of the past 40–120 years are well documented. We use this background to explore in what detail we can retrieve the known population history from these populations, in the light of pitfalls relating to population history, sampling design and the change in the spatial scale at which <i>N</i><sub><i>e</i></sub> is estimated as we go further back in time. The Scandinavian wolf population was founded in the early 1980s from a few individuals and has gradually expanded up to 510 wolves. Although the founder event of the Scandinavian population was detected by GONE, the founding effective population size was strongly overestimated when the most recent samples were used, but less so when older samples were considered. Nevertheless, the present-day <i>N</i><sub><i>e</i></sub> corresponds to theoretical expectations. The western Great Lakes wolf population of Minnesota is the only population in the contiguous United States that persisted throughout the 20th century, surviving intense persecution. We found a good concordance between the estimated <i>N</i><sub><i>e</i></sub> and trends in census size data, but the reconstruction of <i>N</i><sub><i>e</i></sub> clearly highlights the difficulty of interpreting results in spatially structured populations that underwent demographic fluctuations.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do Sex Ratio Distorting Microbes Inhibit the Evolution of Pesticide Resistance? An Experimental Test 扭曲性别比例的微生物会抑制杀虫剂抗药性的进化吗?实验测试
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-14 DOI: 10.1111/eva.70003
Adam M. Fisher, Amelia-Rose V. McKenzie, Tom A. R. Price, Michael B. Bonsall, Robert J. Knell
{"title":"Do Sex Ratio Distorting Microbes Inhibit the Evolution of Pesticide Resistance? An Experimental Test","authors":"Adam M. Fisher,&nbsp;Amelia-Rose V. McKenzie,&nbsp;Tom A. R. Price,&nbsp;Michael B. Bonsall,&nbsp;Robert J. Knell","doi":"10.1111/eva.70003","DOIUrl":"https://doi.org/10.1111/eva.70003","url":null,"abstract":"<p>We are still largely reliant on pesticides for the suppression of arthropod pests which threaten human health and food production, but the recent rise of evolved resistance among important pest species has reduced pesticide efficacy. Despite this, our understanding of strategies that effectively limit the evolution of resistance remains weak. Male-killing sex ratio distorting microbes (SRDMs), such as <i>Wolbachia</i> and <i>Spiroplasma</i>, are common among arthropod species. Previous theoretical work has suggested that they could limit adaptive potential in two ways: first, because by distorting sex ratios they reduce the effective population size, and second, because infected females produce no male offspring which restricts gene flow. Here we present the results of a novel experiment in which we test the extent by which these two mechanisms limit the adaptive response of arthropods to pesticide. Using a fully factorial design, we manipulated the adult sex ratio of laboratory populations of <i>Drosophila melanogaster</i>, both in the presence and absence of SRDMs, and exposed these populations to six generations of pesticide poisoning. This design allows the effects of SRDMs on sex ratio and their effects on gene flow to be estimated separately. After six generations, individuals from populations with even sex ratios displayed a higher resistance to pesticide relative to individuals from female-biased populations. By contrast, we found no effect of the presence of SRDMs in host populations on pesticide resistance independent of sex ratio. In addition, males were more susceptible to pesticide than females—this was true of flies from both naïve and previously exposed populations. These findings provide the first empirical proof of concept that sex ratio distortion arising from SRDMs can limit adaptation to pesticides, but cast doubt on the theoretical effect of male-killers limiting adaptation by disrupting gene flow.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immediate Genetic Augmentation and Enhanced Habitat Connectivity Are Required to Secure the Future of an Iconic Endangered Freshwater Fish Population 为确保一个标志性濒危淡水鱼种群的未来,需要立即进行基因扩增并加强栖息地的连通性
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-12 DOI: 10.1111/eva.70019
Alexandra Pavlova, Luke Pearce, Felicity Sturgiss, Erin Lake, Paul Sunnucks, Mark Lintermans
{"title":"Immediate Genetic Augmentation and Enhanced Habitat Connectivity Are Required to Secure the Future of an Iconic Endangered Freshwater Fish Population","authors":"Alexandra Pavlova,&nbsp;Luke Pearce,&nbsp;Felicity Sturgiss,&nbsp;Erin Lake,&nbsp;Paul Sunnucks,&nbsp;Mark Lintermans","doi":"10.1111/eva.70019","DOIUrl":"https://doi.org/10.1111/eva.70019","url":null,"abstract":"<p>Genetic diversity is rapidly lost from small, isolated populations by genetic drift. Measuring the level of genetic drift using effective population size (<i>N</i><sub>e</sub>) is highly useful for management. Single-cohort genetic <i>N</i><sub>e</sub> estimators approximate the number of breeders in one season (<i>N</i><sub>b</sub>): a value &lt; 100 signals likely inbreeding depression. Per-generation <i>N</i><sub>e</sub> &lt; 1000 estimated from multiple cohort signals reduced adaptive potential. Natural populations rarely meet assumptions of <i>N</i><sub>e</sub>-estimation, so interpreting estimates is challenging. Macquarie perch is an endangered Australian freshwater fish threatened by severely reduced range, habitat loss, and fragmentation. To counteract low <i>N</i><sub>e</sub>, augmented gene flow is being implemented in several populations. In the Murrumbidgee River, unknown effects of water management on among-site connectivity impede the design of effective interventions. Using DArT SNPs for 328 Murrumbidgee individuals sampled across several sites and years with different flow conditions, we assessed population structure, site isolation, heterozygosity, inbreeding, and <i>N</i><sub>e</sub>. We tested for inbreeding depression, assessed genetic diversity and dispersal, and evaluated whether individuals translocated from Cataract Reservoir to the Murrumbidgee River bred, and interbred with local fish. We found strong genetic structure, indicating complete or partial isolation of river fragments. This structure violates assumptions of <i>N</i><sub>e</sub> estimation, resulting in strongly downwardly biased <i>N</i><sub>b</sub> estimates unless assessed per-site, highlighting the necessity to account for population structure while estimating <i>N</i><sub>e</sub>. Inbreeding depression was not detected, but with low <i>N</i><sub>b</sub> at each site, inbreeding and inbreeding depression are likely. These results flagged the necessity to address within-river population connectivity through flow management and genetic mixing through translocations among sites and from other populations. Three detected genetically diverse offspring of a translocated Cataract fish and a local parent indicated that genetic mixing is in progress. Including admixed individuals in estimates yielded lower <i>N</i><sub>e</sub> but higher heterozygosity, suggesting heterozygosity is a preferable indicator of genetic augmentation.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential Selection for Survival and for Growth in Adaptive Laboratory Evolution Experiments With Benzalkonium Chloride 使用苯扎氯铵的适应性实验室进化实验中对生存和生长的差异选择
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-12 DOI: 10.1111/eva.70017
Selina B. I. Schmidt, Tom Täschner, Niclas Nordholt, Frank Schreiber
{"title":"Differential Selection for Survival and for Growth in Adaptive Laboratory Evolution Experiments With Benzalkonium Chloride","authors":"Selina B. I. Schmidt,&nbsp;Tom Täschner,&nbsp;Niclas Nordholt,&nbsp;Frank Schreiber","doi":"10.1111/eva.70017","DOIUrl":"https://doi.org/10.1111/eva.70017","url":null,"abstract":"<p>Biocides are used to control microorganisms across different applications, but emerging resistance may pose risks for those applications. Resistance to biocides has commonly been studied using adaptive laboratory evolution (ALE) experiments with growth at subinhibitory concentrations linked to serial subculturing. It has been shown recently that <i>Escherichia coli</i> adapts to repeated lethal stress imposed by the biocide benzalkonium chloride (BAC) by increased survival (i.e., tolerance) and not by evolving the ability to grow at increased concentrations (i.e., resistance). Here, we investigate the contributions of evolution for tolerance as opposed to resistance for the outcome of ALE experiments with <i>E. coli</i> exposed to BAC. We find that BAC concentrations close to the half maximal effective concentration (EC<sub>50</sub>, 4.36 μg mL<sup>−1</sup>) show initial killing (~40%) before the population resumes growth. This indicates that cells face a two-fold selection pressure: for increased survival and for increased growth. To disentangle the effects of both selection pressures, we conducted two ALE experiments: (i) one with initial killing and continued stress close to the EC<sub>50</sub> during growth and (ii) another with initial killing and no stress during growth. Phenotypic characterization of adapted populations showed that growth at higher BAC concentrations was only selected for when BAC was present during growth. Whole genome sequencing revealed distinct differences in mutated genes across treatments. Treatments selecting for survival-only led to mutations in genes for metabolic regulation (<i>cyaA</i>) and cellular structure (flagella <i>fliJ</i>), while treatments selecting for growth and survival led to mutations in genes related to stress response (<i>hslO</i> and <i>tufA</i>). Our results demonstrate that serial subculture ALE experiments with an antimicrobial at subinhibitory concentrations can select for increased growth and survival. This finding has implications for the design of ALE experiments to assess resistance risks of antimicrobials in different scenarios such as disinfection, preservation, and environmental pollution.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Complexity of the Ne/Nc Ratio for Conservation of Large and Widespread Pelagic Fish Species: Current Status and Challenges 揭示 N e/N c 比例的复杂性以保护大型广布中上层鱼类物种:现状与挑战》。
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-10 DOI: 10.1111/eva.70020
Chrystelle Delord, Sophie Arnaud-Haond, Agostino Leone, Jonathan Rolland, Natacha Nikolic
{"title":"Unraveling the Complexity of the Ne/Nc Ratio for Conservation of Large and Widespread Pelagic Fish Species: Current Status and Challenges","authors":"Chrystelle Delord,&nbsp;Sophie Arnaud-Haond,&nbsp;Agostino Leone,&nbsp;Jonathan Rolland,&nbsp;Natacha Nikolic","doi":"10.1111/eva.70020","DOIUrl":"10.1111/eva.70020","url":null,"abstract":"<p>Estimating and understanding the ratio between effective population size (<i>N</i><sub>e</sub>) and census population size (<i>N</i><sub>c</sub>) are pivotal in the conservation of large marine pelagic fish species, including bony fish such as tunas and cartilaginous fish such as sharks, given the challenges associated with obtaining accurate estimates of their abundance. The difficulties inherent in capturing and monitoring these species in vast and dynamic marine environments often make direct estimation of their population size challenging. By focusing on <i>N</i><sub>e</sub>, it is conceivable in certain cases to approximate census size once the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio is known, although this ratio can vary and does not always increase linearly, as it is influenced by various ecological and evolutionary factors. Thus, this ratio presents challenges and complexities in the context of pelagic species conservation. To delve deeper into these challenges, firstly, we recall the diverse types of effective population sizes, including contemporary and historical sizes, and their implications in conservation biology. Secondly, we outline current knowledge about the influence of life history traits on the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio in the light of examples drawn from large and abundant pelagic fish species. Despite efforts to document an increasing number of marine species using recent technologies and statistical methods, establishing general rules to predict <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> remains elusive, necessitating further research and investment. Finally, we recall statistical challenges in relating <i>N</i><sub>e</sub> and <i>N</i><sub>c</sub> emphasizing the necessity of aligning temporal and spatial scales. This last part discusses the roles of generation and reproductive cycle effective population sizes to predict genetic erosion and guiding management strategies. Collectively, these sections underscore the multifaceted nature of effective population size estimation, crucial for preserving genetic diversity and ensuring the long-term viability of populations. By navigating statistical and theoretical complexities, and addressing methodological challenges, scientists should be able to advance our understanding of the <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> ratio.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Synthesis of Microbe-Driven Acclimation and Adaptation in Wild Vertebrates 野生脊椎动物中微生物驱动的驯化和适应的定量综合研究
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-09 DOI: 10.1111/eva.70025
Garazi Martin Bideguren, Orly Razgour, Antton Alberdi
{"title":"Quantitative Synthesis of Microbe-Driven Acclimation and Adaptation in Wild Vertebrates","authors":"Garazi Martin Bideguren,&nbsp;Orly Razgour,&nbsp;Antton Alberdi","doi":"10.1111/eva.70025","DOIUrl":"10.1111/eva.70025","url":null,"abstract":"<p>Microorganisms associated with animals harbour a unique set of functional traits pivotal for the normal functioning of their hosts. This realisation has led researchers to hypothesise that animal-associated microbial communities may boost the capacity of their hosts to acclimatise and adapt to environmental changes, two eco-evolutionary processes with significant applied relevance. Aiming to assess the importance of microorganisms for wild vertebrate conservation, we conducted a quantitative systematic review to evaluate the scientific evidence for the contribution of gut microorganisms to the acclimation and adaptation capacity of wild vertebrate hosts. After screening 1974 publications, we scrutinised the 109 studies that met the inclusion criteria based on 10 metrics encompassing study design, methodology and reproducibility. We found that the studies published so far were not able to resolve the contribution of gut microorganisms due to insufficient study design and research methods for addressing the hypothesis. Our findings underscore the limited application to date of microbiome knowledge in vertebrate conservation and management, highlighting the need for a paradigm shift in research approaches. Considering these results, we advocate for a shift from observational studies to experimental manipulations, where fitness or related indicators are measured, coupled with an update in molecular techniques used to analyse microbial functions. In addition, closer collaboration with conservation managers and practitioners from the inception of the project is needed to encourage meaningful application of microbiome knowledge in adaptive wildlife conservation management.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish 评估入侵鱼类适应本土栖息地和当代创始人效应对遗传多样性的影响。
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-10-04 DOI: 10.1111/eva.70006
Thaïs A. Bernos, Zdenek Lajbner, Petr Kotlík, Jacklyn M. Hill, Silvia Marková, Jonah Yick, Nicholas E. Mandrak, Ken M. Jeffries
{"title":"Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish","authors":"Thaïs A. Bernos,&nbsp;Zdenek Lajbner,&nbsp;Petr Kotlík,&nbsp;Jacklyn M. Hill,&nbsp;Silvia Marková,&nbsp;Jonah Yick,&nbsp;Nicholas E. Mandrak,&nbsp;Ken M. Jeffries","doi":"10.1111/eva.70006","DOIUrl":"10.1111/eva.70006","url":null,"abstract":"<p>Species invading non-native habitats can cause irreversible environmental damage and economic harm. Yet, how introduced species become widespread invaders remains poorly understood. Adaptation within native-range habitats and rapid adaptation to new environments may both influence invasion success. Here, we examine these hypotheses using 7058 SNPs from 36 native, 40 introduced and 19 farmed populations of tench, a fish native to Eurasia. We examined genetic structure among these populations and accounted for long-term evolutionary history within the native range to assess whether introduced populations exhibited lower genetic diversity than native populations. Subsequent to infer genotype–environment correlations within native-range habitats, we assessed whether adaptation to native environments may have shaped the success of some introduced populations. At the broad scale, two glacial refugia contributed to the ancestry and genomic diversity of tench. However, native, introduced and farmed populations of admixed origin exhibited up to 10-fold more genetic diversity (i.e., observed heterozygosity, expected heterozygosity and allelic richness) compared to populations with predominantly single-source ancestry. The effects of introduction to a new location were also apparent as introduced populations exhibited fewer private alleles (mean = 9.9 and 18.9 private alleles in introduced and native populations, respectively) and higher population-specific <i>Fst</i> compared to native populations, highlighting their distinctiveness relative to the pool of allelic frequencies across tench populations. Finally, introduced populations with varying levels of genetic variation and similar genetic compositions have become established and persisted under strikingly different climatic and ecological conditions. Our results suggest that lack of prior adaptation and low genetic variation may not consistently hinder the success of introduced populations for species with a demonstrated ability to expand their native range.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of Effective Number of Breeders Identify Drivers of Decline in Mid-Atlantic Brook Trout Populations 对繁殖者有效数量的估计确定了大西洋中部布鲁克鳟种群数量下降的驱动因素。
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-09-30 DOI: 10.1111/eva.13769
Zachary L. Robinson, Jason A. Coombs, Mark Hudy, Keith H. Nislow, Andrew R. Whiteley
{"title":"Estimates of Effective Number of Breeders Identify Drivers of Decline in Mid-Atlantic Brook Trout Populations","authors":"Zachary L. Robinson,&nbsp;Jason A. Coombs,&nbsp;Mark Hudy,&nbsp;Keith H. Nislow,&nbsp;Andrew R. Whiteley","doi":"10.1111/eva.13769","DOIUrl":"10.1111/eva.13769","url":null,"abstract":"<p>Brook Trout (<i>Salvelinus fontinalis</i>) populations have experienced marked declines throughout their native range and are presently threatened due to isolation in small habitat fragments, land use changes, and climate change. The existence of numerous, spatially distinct populations poses substantial challenges for monitoring population status (e.g., abundance, recruitment, or occupancy). Genetic monitoring with estimates of effective number of breeders (<i>N</i><sub>b</sub>) provides a potentially powerful metric to complement existing population monitoring, assessment, and prioritization. We estimated <i>N</i><sub>b</sub> for 71 Brook Trout habitat units in mid-Atlantic region of the United States and obtained a mean <i>N</i><sub>b</sub> of 73.2 (range 6.90–493). Our modeling approach tested whether <i>N</i><sub>b</sub> estimates were sensitive to differences in habitat size, presence of non-native salmonids, base flow index, temperature, acidic precipitation, and indices of anthropogenic disturbance. We found significant support for three of our hypotheses including the positive influences of available habitat and base flow index and negative effect of temperature. Our results are consistent with presently observed and predicted future impacts of climate change on populations of this cold-water fish. Importantly, these findings support the use of <i>N</i><sub>b</sub> in population assessments as an index of relative population status.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sex-Specific Trade-Off Between Pesticide Resistance and Tolerance to Heat-Induced Sterility in Tetranychus urticae 荨麻蠹蛾对杀虫剂的抗性与对热诱导不育的耐受性之间的性别特异性权衡
IF 3.5 2区 生物学
Evolutionary Applications Pub Date : 2024-09-26 DOI: 10.1111/eva.70014
Sofia G. Costa, Sara Magalhães, Inês Santos, Flore Zélé, Leonor R. Rodrigues
{"title":"A Sex-Specific Trade-Off Between Pesticide Resistance and Tolerance to Heat-Induced Sterility in Tetranychus urticae","authors":"Sofia G. Costa,&nbsp;Sara Magalhães,&nbsp;Inês Santos,&nbsp;Flore Zélé,&nbsp;Leonor R. Rodrigues","doi":"10.1111/eva.70014","DOIUrl":"https://doi.org/10.1111/eva.70014","url":null,"abstract":"<p>Current pest management relies extensively on pesticide application worldwide, despite the frequent rise of pesticide resistance in crop pests. This is particularly worrisome because resistance is often not costly enough to be lost in populations after pesticide application, resulting in increased dependency on pesticide application. As climate warming increases, effort should be put into understanding how heat tolerance will affect the persistence of pesticide resistance in populations. To address this, we measured heat tolerance in two populations of the spider mite crop pest <i>Tetranychus urticae</i> that differ in the presence or absence of a target-site mutation conferring resistance to etoxazole pesticide. We found that developmental time and fertility, but not survival, were negatively affected by increasing temperatures in the susceptible population. Furthermore, we found no difference between resistant and susceptible populations in all life-history traits when both sexes developed at control temperature, nor when females developed at high temperature. Resistant heat-stressed males, in contrast, showed lower fertility than susceptible ones, indicating a sex-specific trade-off between heat tolerance and pesticide resistance. This suggests that global warming could lead to reduced pesticide resistance in natural populations. However, resistant females, being as affected by high temperature as susceptible individuals, may buffer the toll in resistant male fertility, and the shorter developmental time at high temperatures may accelerate adaptation to temperature, the pesticide or the cost thereof. Ultimately, the complex dynamic between these two factors will determine whether resistant populations can persist under climate warming.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信