Application of Genomic Offsets to Inform Freshwater Fisheries Management Under Climate Change

IF 3.2 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Anna S. Jacquemart, Anna Tigano, Marika Kirstin Gale, Tyler Weir, Hillary G. M. Ward, Carmen M. Wong, Erika J. Eliason, Kristina M. Miller, Scott G. Hinch, Michael A. Russello
{"title":"Application of Genomic Offsets to Inform Freshwater Fisheries Management Under Climate Change","authors":"Anna S. Jacquemart,&nbsp;Anna Tigano,&nbsp;Marika Kirstin Gale,&nbsp;Tyler Weir,&nbsp;Hillary G. M. Ward,&nbsp;Carmen M. Wong,&nbsp;Erika J. Eliason,&nbsp;Kristina M. Miller,&nbsp;Scott G. Hinch,&nbsp;Michael A. Russello","doi":"10.1111/eva.70149","DOIUrl":null,"url":null,"abstract":"<p>Genomic tools are becoming increasingly necessary for mitigating biodiversity loss and guiding management decisions in the context of climate change. Freshwater fish species are particularly susceptible to the impacts of changing environments, including kokanee, the resident form of sockeye salmon (<i>Oncorhynchus nerka</i>), which has already been negatively impacted by increases in extreme temperature throughout its distribution. A previous study using whole genome resequencing of wild kokanee stocks identified 1412 environmentally associated SNPs and demonstrated genomic offset, a measure of climate vulnerability, to be significantly correlated with higher increases in extreme warm temperatures across much of the species' range in western Canada. Here, we aimed to operationalize this information for fisheries management by first developing a Genotyping-in-Thousands by sequencing (GT-seq) panel populated exclusively with environment associated SNPs. We then evaluated the robustness of the GT-seq panel relative to the signal in the whole genome resequencing baseline and demonstrated a novel application of donor and recipient importance (DI/RI) analysis to inform recreational fisheries stocking decisions. We found that a reduced GT-seq panel of 616 SNPs exhibited a significant positive correlation with those calculated from the full set of 1412 SNPs across the climate change scenarios tested; similar results were obtained when adding new reference populations not included in the original whole genome resequencing baseline. The DI/RI analysis revealed clear spatial trends, with populations situated in the warmest regions of southern interior British Columbia (Canada) having the highest probability for successful translocations to different recipient locations to the north. Similarly, candidate recipient lakes for stocking at the center of the distribution had higher recipient importance values than those located towards the eastern and western range peripheries. Although further refinement is required, pairing targeted genotyping with genomic offset and DI/RI predictions holds great promise for informing freshwater fisheries management moving forward.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic tools are becoming increasingly necessary for mitigating biodiversity loss and guiding management decisions in the context of climate change. Freshwater fish species are particularly susceptible to the impacts of changing environments, including kokanee, the resident form of sockeye salmon (Oncorhynchus nerka), which has already been negatively impacted by increases in extreme temperature throughout its distribution. A previous study using whole genome resequencing of wild kokanee stocks identified 1412 environmentally associated SNPs and demonstrated genomic offset, a measure of climate vulnerability, to be significantly correlated with higher increases in extreme warm temperatures across much of the species' range in western Canada. Here, we aimed to operationalize this information for fisheries management by first developing a Genotyping-in-Thousands by sequencing (GT-seq) panel populated exclusively with environment associated SNPs. We then evaluated the robustness of the GT-seq panel relative to the signal in the whole genome resequencing baseline and demonstrated a novel application of donor and recipient importance (DI/RI) analysis to inform recreational fisheries stocking decisions. We found that a reduced GT-seq panel of 616 SNPs exhibited a significant positive correlation with those calculated from the full set of 1412 SNPs across the climate change scenarios tested; similar results were obtained when adding new reference populations not included in the original whole genome resequencing baseline. The DI/RI analysis revealed clear spatial trends, with populations situated in the warmest regions of southern interior British Columbia (Canada) having the highest probability for successful translocations to different recipient locations to the north. Similarly, candidate recipient lakes for stocking at the center of the distribution had higher recipient importance values than those located towards the eastern and western range peripheries. Although further refinement is required, pairing targeted genotyping with genomic offset and DI/RI predictions holds great promise for informing freshwater fisheries management moving forward.

Abstract Image

基因组补偿在气候变化下淡水渔业管理中的应用
在气候变化背景下,基因组工具在减轻生物多样性丧失和指导管理决策方面变得越来越必要。淡水鱼物种特别容易受到环境变化的影响,包括红鲑鱼(Oncorhynchus nerka)的常住形式kokanee,它已经受到整个分布地区极端温度上升的负面影响。先前的一项研究对野生kokanee种群进行了全基因组重测序,发现了1412个与环境相关的snp,并证明了基因组抵消(一种气候脆弱性的衡量标准)与加拿大西部大部分物种活动范围内极端温暖温度的增加显著相关。在这里,我们的目标是通过首先开发一个由环境相关snp组成的基因分型-千分型测序(GT-seq)面板,将这些信息用于渔业管理。然后,我们评估了GT-seq面板相对于全基因组重测序基线信号的稳健性,并展示了供体和受体重要性(DI/RI)分析的新应用,以告知休闲渔业放养决策。我们发现,在气候变化测试情景中,减少的616个SNPs的GT-seq面板与从全套1412个SNPs计算的结果显示出显著的正相关;当添加未包含在原始全基因组重测序基线中的新参考群体时,获得了类似的结果。DI/RI分析揭示了明确的空间趋势,位于不列颠哥伦比亚省(加拿大)南部内陆最温暖地区的人口成功迁移到北部不同接收地的可能性最高。同样,分布中心的候选放养接收湖比位于东部和西部边缘的接收湖具有更高的接收重要性值。虽然需要进一步完善,但将目标基因分型与基因组偏移和DI/RI预测相结合,将为淡水渔业管理的向前发展提供很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信