{"title":"Adenylate-driven equilibration of both ribo- and deoxyribonucleotides is under magnesium control: Quantification of the Mg2+-signal","authors":"Leszek A. Kleczkowski , Abir U. Igamberdiev","doi":"10.1016/j.jplph.2024.154380","DOIUrl":"10.1016/j.jplph.2024.154380","url":null,"abstract":"<div><div>Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg<sup>2+</sup> controlling the ratios of Mg-free and Mg-complexed reactants. Their activities are driven by adenylates produced by adenylate kinase which controls the direction of NMPK and NDPK reactions, depending on the energy status of a cell. This enzymatic machinery is localized in the cytosol, mitochondria, and plastids, i.e. compartments with high energy budgets and where (except for cytosol) RNA and DNA synthesis occur. Apparent equilibrium constants of NMPKs, based on total nucleotide contents, are [Mg<sup>2+</sup>]-dependent. This allows for an indirect estimation of internal [Mg<sup>2+</sup>], which constitutes a signal of the energetic status of a given tissue/cell/compartment. Adenylates contribute the most to this Mg<sup>2+</sup>-signal, followed by uridylates, guanylates, and cytidylates, with deoxynucleotides’ contribution deemed negligible. A method to quantify the Mg<sup>2+</sup>-signal, using nucleotide datasets, is discussed.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154380"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Individual and interactive effects of temperature and blue light on canola growth, lignin biosynthesis and methane emissions","authors":"Brooke T. Dauphinee, Mirwais M. Qaderi","doi":"10.1016/j.jplph.2024.154402","DOIUrl":"10.1016/j.jplph.2024.154402","url":null,"abstract":"<div><div>It is now well documented that plants produce methane (CH<sub>4</sub>) under aerobic conditions. However, the mechanisms of methane production in plants, its potential precursors, and the factors that are involved in the process are not fully understood. Few studies have considered the effects of blue light on methane emissions from plants; however, the combined effects of temperature and blue light have not been studied. We studied the effects of two temperature regimes (22/18 °C and 28/24 °C; 16 h light/8 h dark), and three blue light levels (0, 4, and 8 mW cm<sup>−2</sup>; 400–500 nm) on the growth, lignin, and methane emissions of canola (<em>Brassica napus</em>). Plants were grown under experimental conditions for three weeks, and then methane, monolignols and other plant traits, including growth, biomass, growth index, photosynthesis, chlorophyll fluorescence, and photosynthetic pigments, were measured. Blue light significantly increased methane emissions, stem height, and growth rate, but decreased stem diameter, leaf number and area, biomass, specific leaf mass, leaf area ratio, shoot/root mass ratio, photosynthetic pigments, sinapyl alcohol, and coniferyl aldehyde. Higher temperature significantly decreased stem diameter, non-photochemical quenching, sinapyl alcohol, and coniferyl aldehyde. Methane emission was negatively correlated with plant dry mass, leaf area per plant, and maximum quantum yield of photosystem II. However, no significant relationships were found between methane and monolignols. In conclusion, plants emitted more methane under stress conditions; however, further studies are required to understand the potential precursors of methane and the mechanism of its synthesis in plants.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154402"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Zhang , Venuste Munyaneza , Dandan Wang , Chenfeng Huang , Siyuan Wu , Mingcun Han , Xu Wang , Surya Kant , Guangda Ding
{"title":"Partial replacement by ammonium nutrition enhances Brassica napus growth by promoting root development, photosynthesis, and nitrogen metabolism","authors":"Wen Zhang , Venuste Munyaneza , Dandan Wang , Chenfeng Huang , Siyuan Wu , Mingcun Han , Xu Wang , Surya Kant , Guangda Ding","doi":"10.1016/j.jplph.2024.154411","DOIUrl":"10.1016/j.jplph.2024.154411","url":null,"abstract":"<div><div>Nitrogen (N) is crucial for plant growth, available primarily as nitrate (NO<sub>3</sub><sup>−</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>). However, its presence in soil is often limited, necessitating strategies to augment N availability. This study delves into the enigmatic interplay between NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup> in fostering the growth of <em>Brassica napus</em>, an important oil crop worldwide. Here, we examined the growth responses of 49 <em>B. napus</em> varieties to five NH<sub>4</sub><sup>+</sup>:NO<sub>3</sub><sup>−</sup> ratios (12:0, 9:3, 3:9, 1:11, 0:12). In general, the biomass of 49 rapeseed varieties increased with the decrease of NH<sub>4</sub><sup>+</sup> to NO<sub>3</sub><sup>−</sup> ratios in the growth environment. However, different varieties may respond diversely to the mixed N sources, or sole NO<sub>3</sub><sup>−</sup> or NH<sub>4</sub><sup>+</sup> condition. For some cultivars, the mixed N supply significantly enhanced the plant growth compared with the sole NO<sub>3</sub><sup>−</sup> conditions. Thus, we further investigate the morphological, physiological and molecular response of rapeseed to the mixed N source condition using sole NO<sub>3</sub><sup>−</sup> as a control. The results show that partial replacement by ammonium nutrition in the environment can promote rapeseed root development, net photosynthetic rate and NO<sub>3</sub><sup>−</sup> reduction compared to NO<sub>3</sub><sup>−</sup>-only conditions. Using transcriptome analysis, we found a total of 399 and 465 genes which were differentially expressed in root and shoot under A1N11 compared to A0N12 treatments, respectively. Genes involved in photosynthesis, N uptake and assimilation were upregulated by mixed N supplies. These findings highlight that the mixed N supply primarily stimulates <em>B. napus</em> growth by enhancing root development, photosynthesis and N metabolism in the shoot. Such insights are crucial for optimizing N form selection in <em>B. napus</em> to enhance plant performance and N use efficiency.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154411"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis Porcher , Emmanuel Duffour , Frédéric Perisse , Sébastien Menecier , Vincent Guérin , Maxime Moreau , Chloé Davranche , Françoise Paladian , Pierre Bonnet , Alain Vian
{"title":"Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma","authors":"Alexis Porcher , Emmanuel Duffour , Frédéric Perisse , Sébastien Menecier , Vincent Guérin , Maxime Moreau , Chloé Davranche , Françoise Paladian , Pierre Bonnet , Alain Vian","doi":"10.1016/j.jplph.2024.154397","DOIUrl":"10.1016/j.jplph.2024.154397","url":null,"abstract":"<div><div>Cold Atmospheric Plasma (CAP) technology has emerged as a promising tool in various biological applications due to its ability to generate a composite signal comprising reactive oxygen and nitrogen species, ultraviolet radiation, and electromagnetic fields, all while maintaining a stable temperature. Although CAP treatments have demonstrated significant effects on seed germination and plant growth, the direct molecular responses of plants to CAP exposure remain poorly understood. In this study, young <em>Arabidopsis thaliana</em> leaves were exposed to a brief 5- or 30-s localized CAP treatment, resulting in rapid and localized tissue damage without causing lethal effects on the entire plant. Molecular analyses conducted on the entire plant rosette revealed a notable increase in hydrogen peroxide levels, along with the upregulation of stress-related genes, akin to a wound response. Of particular interest, the activation of RelA/SpoT Homolog (RSH) genes encoding proteins that regulate the synthesis of the stress marker (p)ppGpp, also known as alarmone, and playing a major role in the energic regulation of photosynthesis, occurred shortly after CAP exposure. The expression of <em>RSH</em> genes was up-regulated after 5s CAP exposure, while the wound stress marker <em>ZAT12</em> remained unaffected, highlighting a specific signalling pathway to activate <em>RSH</em> genes. This finding suggests the potential involvement of the alarmone signalling pathway in the plant's response to CAP exposure, thereby opening avenues for further exploration of metabolic pathways and signalling cascades induced by CAP treatment.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154397"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Zhang , Mingying Shi , Yuquan Lin , Qin Chen , Xingren Shi
{"title":"Effects of two amino acid transporter-like genes on potato growth","authors":"Chao Zhang , Mingying Shi , Yuquan Lin , Qin Chen , Xingren Shi","doi":"10.1016/j.jplph.2024.154408","DOIUrl":"10.1016/j.jplph.2024.154408","url":null,"abstract":"<div><div>Amino acid transporters are membrane proteins that mediate amino acid transport across the plasma membrane. They play a significant role in plant growth and development. The amino acid permease (AAP) subfamily belongs to the activating transcription factor family, which is one of the main amino acid transporter families. Potato AAP genes were identified through simple bioinformatics, and the functions of <em>StAAP1</em> and <em>StAAP8</em> were verified by plant subcellular localization and potato transgenic technology. In this study, eight AAP-like genes in potato were separated into two subgroups based on the differences in the number of pore-lining residues. To identify the locations where the genes were expressed, we built green fluorescent protein expression vectors for two genes, <em>StAAP1</em> and <em>StAAP8</em>, and found that these two genes were expressed on the plasma membrane. Meanwhile, we constructed overexpression vectors for these two genes to construct transgenic plants. By observing the phenotype of the transgenic plants, we concluded that <em>StAAP1</em> and <em>StAAP8</em> promoted leaf growth and increased leaf area and <em>StAAP1</em> elongated the potato tubers. Overall, these two genes did not significantly affect tuber weight or number. However, the assessment of amino acid content in potato tubers showed that <em>StAAP8</em> overexpression increased the content of amino acids, and some of these amino acids were related to protein synthesis. Therefore, <em>StAAP8</em> overexpression may promote the accumulation of plant amino acids. Studies have shown that there are some differences in the functions of different transcription factor members. The studied AAP8 gene plays a role in amino acid transport and protein accumulation in potato tubers, which provides support for subsequent research on potato tuber nutrition.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154408"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunlin Fu , Chunyang Bian , Jing Chen , Qian Zhang , Dong Qin , Jiangkuo Li , Peng Zhang , Junwei Huo , Huixin Gang
{"title":"LcMYB5, an R2R3-MYB family gene from Lonicera caerulea L., enhances drought and salt tolerance in transgenic tobacco and blue honeysuckle","authors":"Chunlin Fu , Chunyang Bian , Jing Chen , Qian Zhang , Dong Qin , Jiangkuo Li , Peng Zhang , Junwei Huo , Huixin Gang","doi":"10.1016/j.jplph.2024.154409","DOIUrl":"10.1016/j.jplph.2024.154409","url":null,"abstract":"<div><div>MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene <em>LcMYB5</em> from blue honeysuckle (<em>Lonicera caerulea</em> L.) was successfully cloned and identified, and confirmed its nuclear localization. <em>LcMYB5</em> overexpression was vastly enhanced drought and salt tolerance in both blue honeysuckle and tobacco seedlings. After drought stress, transgenic tobacco exhibited an average survival rate of 70.30%, while most wild-type (WT) plants perished, resulting in a survival rate of only 15.33%. Following salt stress, the average survival rate for transgenic tobacco reached 77.24%, compared to just 22.47% for WT plants. Measurements indicated, that transgenic tobacco had higher proline content than WT, as well as higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity. Transgenic tobacco decreased chlorophyll content less dramatically than WT tobacco, despite both tobaccos having decreased chlorophyll content. Furthermore, the level of malondialdehyde (MDA) and relative conductivity were lower in transgenic tobacco compared to WT. Furthermore, LcMYB5 overexpression significantly increased the expression levels of key genes related to drought stress (<em>NCED1</em>, <em>NCED2</em>, <em>PYL4</em>, <em>PYL8</em>, and <em>CBL1</em>) and salt stress (<em>NHX1</em>, <em>SOD</em>, <em>CAT1</em>, <em>SOS1</em>, and <em>HSP17.8</em>), thus improving transgenic tobacco's stress tolerance. Compared to WT blue honeysuckle, transiently transformed LcMYB5-expressing blue honeysuckle exhibited milder damage under stress conditions, a significant increase in chlorophyll and proline content was observed, the activities of SOD, POD and CAT were also significantly increased, the increase in MDA content and relative conductivity is relatively small. Additionally, In addition, transient expression of <em>LcMYB5</em> can also positively regulate the expression of these five key genes of drought stress and five key genes of salt stress, so as to improve the resistance of transgenic blue honeysuckle to drought and salt stress. In summary, our study reveals the important regulatory role of <em>LcMYB5</em> in plant resistance to drought and salt stress, providing theoretical support and potential application value for further improving crop stress resistance.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154409"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Wang , Youquan Xia , Lili You , Yindi Liu , Jixin Zou , Qing Xie , Xingyu Jiang
{"title":"Characterization of ammonium absorption by ammonium-preferential cassava","authors":"Yu Wang , Youquan Xia , Lili You , Yindi Liu , Jixin Zou , Qing Xie , Xingyu Jiang","doi":"10.1016/j.jplph.2024.154401","DOIUrl":"10.1016/j.jplph.2024.154401","url":null,"abstract":"<div><div>Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.15 mM NH<sub>4</sub>NO<sub>3</sub>) than under normal nitrogen levels. Furthermore, a low concentration of ammonium (NH<sub>4</sub><sup>+</sup>) was sufficient for cassava plants, suggesting that cassava may efficiently absorb NH<sub>4</sub><sup>+</sup> in the high-affinity concentration range. AMT1 transporters are involved in high-affinity NH<sub>4</sub><sup>+</sup> uptake in plants. Four AMT1-type genes were cloned from cassava plants, and all four MeAMT1 transporters (MeAMT1; 1-MeAMT1; 3, MeAMT1; 5) were found to localize at the plasma membrane. Of them, expression of MeAMT1; 1, MeAMT1; 3 and MeAMT1; 5 restored growth of a yeast mutant strain and an <em>Arabidopsis</em> mutant line lacking primary ammonium transporters under ammonium deficiency. More interestingly, both NH<sub>4</sub><sup>+</sup> absorption mediated by MeAMT1; 5 in transgenic yeast cells and NH<sub>4</sub><sup>+</sup> influx at cassava roots displayed a two-phase pattern characterized by high- and low-affinity. In particular, the constant of high-affinity ammonium uptake mediated by MeAMT1; 5 is similar to the Km value of high-affinity ammonium absorption at cassava roots, but also close to the ammonium concentration of most soils, suggesting that cassava can efficiently capture low amounts of NH<sub>4</sub><sup>+</sup> from soils via plasma membrane-bound AMT1-type ammonium transporters, allowing the crop to grow and develop very well in low-nitrogen soils.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154401"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tran-Nguyen Nguyen, Pham Anh Tuan, Deepak Sharma, Belay T. Ayele
{"title":"Alteration in the balance between ABA and GA signaling mediates genetic variation in induction and retention of dormancy during seed maturation in wheat","authors":"Tran-Nguyen Nguyen, Pham Anh Tuan, Deepak Sharma, Belay T. Ayele","doi":"10.1016/j.jplph.2024.154394","DOIUrl":"10.1016/j.jplph.2024.154394","url":null,"abstract":"<div><div>Induction and retention of dormancy are among the physiological processes that take place during seed maturation; however, the molecular mechanisms underlying these events are poorly understood in wheat. This study revealed that seed maturation in wheat is associated with decreases in abscisic acid (ABA) and gibberellin (GA) levels irrespective of dormancy level exhibited by the seeds mainly via expression of specific ABA (<em>TaCYP707A</em>1) and GA (<em>TaGA3ox2</em>, <em>TaGA2ox3</em> and <em>TaGA2ox6</em>) metabolism genes. Consistently, ABA to GA level ratio decreased during maturation in both highly dormant and low-dormant seeds with no apparent difference in the ratio of their levels between the two seed samples. Our data, however, showed a close association between the induction and retention of dormancy during seed maturation and modulation of the balance between ABA and GA signaling via expression of specific genes that acts as positive regulators seed response to ABA (<em>TaPYL5</em> and <em>TaABI5</em>) and GA (<em>TaGAMyb</em>). Consistently, the highly dormant and low-dormant seeds exhibited substantial variation in their sensitivity to ABA and GA during their maturation. The findings of this study highlight that genetic variation in induction and retention of dormancy during wheat seed maturation can be mediated by a shift in balance between seed sensitivity to ABA and GA independent of a shift in balance between their levels.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154394"},"PeriodicalIF":4.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dolores Vázquez-Rivera , Pedro Iván Huerta-Venegas , Javier Raya-González , César Arturo Peña-Uribe , Jesús Salvador López-Bucio , Ernesto García-Pineda , José López-Bucio , Jesús Campos-García , Homero Reyes de la Cruz
{"title":"BX517, an inhibitor of the mammalian phospholipid-dependent kinase 1 (PDK1), antagonizes sucrose-induced plant growth and represses the target of rapamycin (TOR) signaling and the cell cycle through WEE1 kinase in Arabidopsis thaliana","authors":"Dolores Vázquez-Rivera , Pedro Iván Huerta-Venegas , Javier Raya-González , César Arturo Peña-Uribe , Jesús Salvador López-Bucio , Ernesto García-Pineda , José López-Bucio , Jesús Campos-García , Homero Reyes de la Cruz","doi":"10.1016/j.jplph.2024.154386","DOIUrl":"10.1016/j.jplph.2024.154386","url":null,"abstract":"<div><div>The target of rapamycin (TOR) signaling pathway is critical for plant growth and stress adaptation through maintaining the proper balance between cell proliferation and differentiation. Here, by using BX517, an inhibitor of the mammalian phosphoinositide-dependent protein kinase 1 (PDK1), we tested the hypothesis that a plant ortholog of PDK1 could influence the TOR complex activity and its target, the S6 ribosomal protein kinase (S6K) in Arabidopsis seedlings. Through locally applying sucrose to leaves, which promotes root growth and plant biomass production via TOR signaling, we could demonstrate the opposite trend upon BX517 treatment, which antagonized sucrose-induced plant growth and overly decreased root development through inhibiting the expression of mitotic cyclins CYCB1 and CYCA3 in root meristems. Evidence was gathered that the WEE1 kinase, a master regulator of the DNA damage rescue system in meristems, operates downstream of a plant BX517 target(s). TOR protein activity and WEE1 expression were analyzed through protein blots and reporter gene activity, respectively, and their relationship with meristematic cell cycle progression was tested through genetic analyses. BX517 reduced TOR kinase activity, activated WEE1 expression in shoot, root, and lateral root meristems, and inhibited meristematic cell cycle progression in roots, suggesting that PDK1 is a critical element for plant responses to mitogenic factors through modulating TOR activity. Our data uncover a relation between a PDK1 ortholog with TOR activity and the expression of WEE1 kinase for growth and stress responses in plants.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154386"},"PeriodicalIF":4.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Yin, Liuzi Zhang, Jiangting Zhang, Yan Zhong, Liangju Wang
{"title":"MdFC2, a ferrochelatase gene, is a positive regulator of ALA-induced anthocyanin accumulation in apples","authors":"Yifan Yin, Liuzi Zhang, Jiangting Zhang, Yan Zhong, Liangju Wang","doi":"10.1016/j.jplph.2024.154381","DOIUrl":"10.1016/j.jplph.2024.154381","url":null,"abstract":"<div><div>5-Aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrrole compounds, significantly induces anthocyanin accumulation in apple (<em>Malus</em> × <em>domestica</em> Borkh.) as well as other fruits. Although the molecular mechanisms of ALA-induced anthocyanin accumulation have been reported, it remains unknown whether the metabolism of ALA is involved in ALA-induced anthocyanin accumulation. Here, we found that <em>MdFC2</em>, a gene encoding ferrochelatase (MdFC2), which catalyzes the generation of heme from protoporphyrin lX (PPIX), may play an important role in ALA-induced apple anthocyanin accumulation. Exogenous ALA induced the <em>MdFC2</em> expression as well as anthocyanin accumulation in apple leaves, calli, and isolated fruits. <em>MdFC2</em> overexpression in apple leaves or calli significantly enhanced anthocyanin accumulation as well as the expression of genes involved in anthocyanin biosynthesis, while RNA interference <em>MdFC2</em> inhibited anthocyanin accumulation and the expression of genes involved in anthocyanin biosynthesis. When 2,2′-dithiodipyridine, an inhibitor of MdFC2, was added, ALA-induced anthocyanin accumulation was blocked. These results suggest that ALA-induced anthocyanin accumulation of apple may be regulated by heme or its biosynthesis, among which <em>MdFC2</em> or MdFC2 may play a critical positive regulatory role. This finding provides a novel insight to explore the mechanisms of ALA-regulating physiological processes and better application of ALA in high-quality fruit production.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154381"},"PeriodicalIF":4.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}