Lei Chen , Xuyan Fu , Kun Wu , Xiangbing Chang , Wei Tian
{"title":"AmCERK1 and AmLYK3 interaction mediates CIP-induced defense responses in A. macrocephala","authors":"Lei Chen , Xuyan Fu , Kun Wu , Xiangbing Chang , Wei Tian","doi":"10.1016/j.jplph.2025.154497","DOIUrl":null,"url":null,"abstract":"<div><div>Southern blight caused by <em>Sclerotium rolfsii</em> (<em>S. rolfsii</em>) represents a significant threat to the medicinal plant <em>Atractylodes macrocephala</em> Koidz. (<em>A. macrocephala</em>), with effective control measures remaining limited. <em>Chrysanthemum indicum</em> polysaccharides (CIP) have been identified as an elicitor capable of inducing defense responses in <em>A. macrocephala</em> against <em>S. rolfsii</em> infection. However, the molecular mechanisms underlying CIP recognition remain poorly understood. In this study, comparative transcriptome analysis revealed two potential <em>LysM</em>-receptor kinases, Am<em>CERK1</em> and Am<em>LYK3</em>, as candidate receptors for CIP recognition. These genes, which are orthologous to <em>Arabidopsis CERK1</em> and <em>Medicago truncatula LYK3</em>, exhibited significant up-regulation upon CIP treatment. Bimolecular fluorescence complementation (BiFC) assays demonstrated that Am<em>CERK1</em> and Am<em>LYK3</em> interact in a CIP-dependent manner. Transient overexpression experiments further confirmed that CIP treatment markedly enhanced the expression of these receptor genes. Virus-induced gene silencing (VIGS) assays indicated that CIP treatment could partially compensate for the suppression of Am<em>CERK1</em> and Am<em>LYK3</em>, highlighting their critical role in CIP-induced defense responses. Collectively, these findings suggest that Am<em>CERK1</em> and Am<em>LYK3</em> form a pattern recognition receptor (PRR) complex essential for CIP perception, potentially facilitating pattern-triggered immunity (PTI) in <em>A. macrocephala</em>. These findings reveal a novel receptor recognition complex comprising Am<em>CERK1</em> and Am<em>LYK3</em>, offering crucial insights into the mechanisms of innate immune recognition in plants.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"308 ","pages":"Article 154497"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000793","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Southern blight caused by Sclerotium rolfsii (S. rolfsii) represents a significant threat to the medicinal plant Atractylodes macrocephala Koidz. (A. macrocephala), with effective control measures remaining limited. Chrysanthemum indicum polysaccharides (CIP) have been identified as an elicitor capable of inducing defense responses in A. macrocephala against S. rolfsii infection. However, the molecular mechanisms underlying CIP recognition remain poorly understood. In this study, comparative transcriptome analysis revealed two potential LysM-receptor kinases, AmCERK1 and AmLYK3, as candidate receptors for CIP recognition. These genes, which are orthologous to Arabidopsis CERK1 and Medicago truncatula LYK3, exhibited significant up-regulation upon CIP treatment. Bimolecular fluorescence complementation (BiFC) assays demonstrated that AmCERK1 and AmLYK3 interact in a CIP-dependent manner. Transient overexpression experiments further confirmed that CIP treatment markedly enhanced the expression of these receptor genes. Virus-induced gene silencing (VIGS) assays indicated that CIP treatment could partially compensate for the suppression of AmCERK1 and AmLYK3, highlighting their critical role in CIP-induced defense responses. Collectively, these findings suggest that AmCERK1 and AmLYK3 form a pattern recognition receptor (PRR) complex essential for CIP perception, potentially facilitating pattern-triggered immunity (PTI) in A. macrocephala. These findings reveal a novel receptor recognition complex comprising AmCERK1 and AmLYK3, offering crucial insights into the mechanisms of innate immune recognition in plants.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.