{"title":"In-Situ generation of nano TiO2 from MIL-125(Ti) and its role in boosting the photocatalytic degradation of tetracycline hydrochloride","authors":"","doi":"10.1016/j.jphotochem.2024.116103","DOIUrl":"10.1016/j.jphotochem.2024.116103","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs), such as MIL-125(Ti), are advanced photocatalytic materials due to their tunable compositions and functionalities. However, their practical application in photocatalysis is often limited by their wide bandgap and the inherent structural instability. This study presents a strategy to improve the photocatalytic performance of MIL-125(Ti) by hydrothermal reaction combined with an in-situ decomposition to generate nano TiO<sub>2</sub>, creating a composite with g-C<sub>3</sub>N<sub>5</sub> nanosheets. The obtained composite exhibited a rate constant of 0.00122 min<sup>−1</sup> mg<sup>−1</sup> for the degradation of tetracycline hydrochloride under visible light irradiation, which is 24.4 and 20.3 times that of g-C<sub>3</sub>N<sub>5</sub> and MIL-125(Ti), respectively. Characterization results indicated the formation of an effective composite structure that improved the separation efficiency of photogenerated carriers and promoted the generation of reactive oxygen species. The in-situ generated TiO<sub>2</sub> within the MIL-125(Ti)/g-C<sub>3</sub>N<sub>5</sub> composite during the preparation and photocatalysis processes not only compensated for the structural damage to the original MIL-125(Ti) but also significantly enhanced its degradation performance under visible light. The recyclability and stability of the composite material were also demonstrated, highlighting its potential for practical photocatalytic applications.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Donor–π bridge-acceptor dyes featuring dual chromophoric groups for enhanced sensitivity in wearable sweat sensor","authors":"","doi":"10.1016/j.jphotochem.2024.116090","DOIUrl":"10.1016/j.jphotochem.2024.116090","url":null,"abstract":"<div><div>The pH value of human sweat serves as a crucial biomarker for disease diagnosis, rendering wearable sweat sensors an innovative tool for monitoring human health. However, the commercialization of these devices is seriously impeded by their low sensitivity, poor wearing comfort, and limited reusability. In this work, a reactive dye capable of color change under pH change has been synthesized. Due to the unique molecular structure, the dye molecule exhibits remarkable color change recognition and high sensitivity. To fabricate a wearable pH sensor, screen printing technology was employed for depositing the color-changing dye onto cotton fabric. The resulting sensor demonstrated excellent performance attributes including high color sensitivity, robust cyclic stability in response to pH changes, and exceptional resistance against washing, friction, and sunlight-induced fading. Therefore, this study presents a highly promising approach for achieving real-time monitoring of human sweat pH levels.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyrimidine derivative mimicking the locked enol form of avobenzone acts as a photostable UVAII and UVB filter","authors":"","doi":"10.1016/j.jphotochem.2024.116099","DOIUrl":"10.1016/j.jphotochem.2024.116099","url":null,"abstract":"<div><div>The broad UVA (UVAI and UVAII) filtering activity of the sunscreen agent avobenzone is due to its enolic forms which undergoes ketonization followed by degradation upon exposure to sunlight/radiation. The current report aims to lock the enolic forms of avobenzone through chemical derivatization that preserves the chelated intramolecular hydrogen bond geometry. The pyrimidine derivative mimicking both the enol-1 and enol-2 forms of avobenzone has been synthesized and evaluated for it photostability under natural sunlight by UV spectroscopy. The avobenzone pyrimidine derivative acts as a broad-spectrum UVAII, and UVB filter and exhibits unprecedented photostability under sunlight. The new derivative of avobenzone is a valuable additive to the tool kit of chemical UV filters and its poor skin permeability relative to the native avobenzone may be an advantage for cosmetics.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal organic frameworks (MOFs)-based fluorescent CA125 analysis: A comparative study of the quenching effects of MIL-101, Cu-MOF, ZIF-8, UiO-66","authors":"","doi":"10.1016/j.jphotochem.2024.116098","DOIUrl":"10.1016/j.jphotochem.2024.116098","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are a class of materials with highly ordered pore structures. Due to their unique physical and chemical properties, they show great potential in the field of biosensors. Some MOFs can adsorb fluorescently labeled nucleic acid aptamers through various interaction mechanisms (such as electrostatic interactions, π-π stacking, hydrogen bonding, etc.). These interactions not only ensure the stable binding of the aptamers but also allow for their controlled release under specific conditions (such as changes in pH, temperature, or the presence of specific molecules). This mechanism provides multiple possibilities for the design of biosensors. Herein, we have systematically compared the quenching effects of widely used MOFs that can bind to aptamers, i.e., Fe-MOF (MIL-101), Cu-MOF, Zn-MOF (ZIF-8) and Zr-MOF (UiO-66). The study on the kinetics, quenching efficiency, and influencing factors such as ionic strength pH and temperature is performed. Interestingly, Cu-MOF exhibits superior quenching abilities to the other three materials in both the quenching efficiency and kinetics. Thus, a Cu-MOF based fluorescent sensor is reported to detect the ovarian cancer marker carbohydrate antigen 125 (CA125), which provides convenient detection performance (assay time about 10 min), and a detection range from 0.1 to 400 ng/mL. Moreover, it is designed in a simple mix-and-detect format and can be directly applied to clinical sample detection. This work may offer guidance for the choice of MOFs and elaborate design of biosensors.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of carboxylesterases by an activatable NIR fluorescence probe with high selectivity in living systems","authors":"","doi":"10.1016/j.jphotochem.2024.116088","DOIUrl":"10.1016/j.jphotochem.2024.116088","url":null,"abstract":"<div><div>Carboxylesterases (CEs) have attracted increasingly attention in the physiological and pathological processes of many diseases such as diabetes, hepatocellular carcinoma (HCC) and drug metabolism. Selective detection of CEs activity is imperative to evaluate the pathophysiological process of CEs-related disease. Herein, a selective near-infrared (NIR) fluorescent probe <strong>(DCM-CE</strong>) with high selectivity is reported. <strong>DCM-CE</strong> was composed of dicyanoisophorone-based fluorophore and carbamate unit which is a highly selective identification group for CEs. <strong>DCM-CE</strong> exhibited good sensitivity for CEs detection at physiological pH and temperature. Furthermore, <strong>DCM-CE</strong> featured large Stokes shift (175 nm) and good at tracking the drug-induced trace change of CEs activity in HepG2 cells with little effect on cell viability. Moreover, <strong>DCM-CE</strong> was applied to monitor the activity of CEs in living mice. Taken all together, <strong>DCM-CE</strong> had extensive potential application value in detecting CEs for evaluating related diseases.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coordination-driven molecular switch on the base of an ESIPT-capable pyrimidine ligand: Synthesis, fine-tuning of emission by the halide anion and theoretical studies","authors":"","doi":"10.1016/j.jphotochem.2024.116091","DOIUrl":"10.1016/j.jphotochem.2024.116091","url":null,"abstract":"<div><div>ESIPT-based materials (ESIPT = Excited State Intramolecular Proton Transfer) find diverse applications in optoelectronics and biomedicine owing to the peculiarities of their luminescence properties. Here, an ESIPT-capable compound 2-(3,5-dimethyl-1<em>H</em>-pyrazol-1-yl)-4-(2-hydroxyphenyl)pyrimidine (<strong>HL<sup>4,2,Me</sup></strong>) featuring a short O–H⋅⋅⋅N intramolecular hydrogen bond and two N,N-sites for metal binding has been synthesized. <strong>HL<sup>4,2,Me</sup></strong> is the first reported molecule which can act as an ESIPT molecular switch triggered by metal ion coordination without its deprotonation. Drastic changes in the <strong>HL<sup>4,2,Me</sup></strong> conformation in the <strong>[Zn(HL<sup>4,2,Me</sup>)X<sub>2</sub>]</strong> (X = Cl, Br,<!--> <!-->I) complexes significantly alter the photoluminescence response compared to the free ligand. In the solid state, <strong>HL<sup>4,2,Me</sup></strong> exhibits barrierless ESIPT and large Stokes-shifted yellow-orange emission due to the interplay of anti-Kasha S<sub>2</sub> → S<sub>0</sub> fluorescence and Kasha-like T<sub>1</sub> → S<sub>0</sub> phosphorescence radiative channels. The violation of Kasha’s rule for <strong>HL<sup>4,2,Me</sup></strong> is justified by an extraordinarily large S<sub>2</sub> – S<sub>1</sub> energy gap (<em>ca.</em> 0.9 eV), slowing down the rate of S<sub>2</sub> → S<sub>1</sub> internal conversion. The photoluminescence behavior of the ESIPT–incapable zinc(II) coordination compounds strongly depends on the halide anion: the chlorido complex exhibits only fluorescence, the bromido complex displays a minor phosphorescence channel in addition to a major fluorescence channel, while the iodido complex exhibits predominantly phosphorescence. As a result, the emission color of the <strong>[Zn(HL<sup>4,2,Me</sup>)X<sub>2</sub>]</strong> complexes changes gradually from blue for X = Cl to orange for X = I, providing a platform for the fine-tuning of emission by the halide anion.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensitive photoelectrochemical aptasensing of Salmonella enteritidis based on AgBiS2 and Ag/g-C3N4 with gold nanoparticles","authors":"","doi":"10.1016/j.jphotochem.2024.116093","DOIUrl":"10.1016/j.jphotochem.2024.116093","url":null,"abstract":"<div><div>In this paper, an ultrasensitive photoelectric chemical sensor based on AgBiS<sub>2</sub> and Ag/g-C<sub>3</sub>N<sub>4</sub> was prepared for the detection of <em>Salmonella enteritidis</em> (SE). The AgBiS<sub>2</sub> and Ag/g-C<sub>3</sub>N<sub>4</sub> were modified on FTO by layer modification to increase the photoelectric activity of the electrode, the gold nanoparticles continued to be modified, and the aptamer of SE was fixed by Au<img>S bond to realize the specific detection of SE. Compared with the AgBiS<sub>2</sub>-modified electrode, the electrode prepared by the composite material produced a significantly enhanced and stable photocurrent signal under Xe lamp irradiation. The detection limit of sensor was 2.18 CFU/mL, and ideally, the concentration of SE detection would show a good linear relationship between 6.72 × 10<sup>3</sup> CFU/mL and 6.72 × 10<sup>8</sup> CFU/mL. The constructed photoelectrochemical sensor has strong sensitivity, wide linear range, and good selectivity for potential pathogenic bacteria. Therefore, this study provides a very promising photoelectric chemical platform for the detection of SE.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of g-C3N4 from mixed ammonium salts containing NH4SCN and characterization of its cobalt-modified photocatalytic degradation of formaldehyde","authors":"","doi":"10.1016/j.jphotochem.2024.116097","DOIUrl":"10.1016/j.jphotochem.2024.116097","url":null,"abstract":"<div><div>This paper aims to achieve high-quality utilization of desulfurization waste liquid mixed salt. CN-MIX was prepared through pyrolysis of a mixture containing ammonium thiocyanate, ammonium thiosulfate, and ammonium sulfate. Additionally, CN-MIX/Co-a was produced via an impregnation-pyrolysis method with cobalt modification. The performance of the photocatalysts was evaluated using the formaldehyde degradation rate as an index, and their stability was tested. The results indicate that the specific surface area and pore volume of CN-MIX/Co-a increase by 1.53-fold and 1.44-fold, respectively, compared to CN prepared from single salt. The cobalt loading inhibits the thermal polymerization of CN-MIX, leading to a reduction in the intensity of the (0<!--> <!-->0<!--> <!-->2) crystal diffraction peaks. Additionally, CN-MIX/Co-a exhibits an increase in the C<img>N peak at 2000–2200 cm<sup>−1</sup>, generating more photocatalytic active sites. The absorption sideband in the visible range red-shifts from 429 nm to 458 nm, broadening the photoresponse range. The emission peak in the photoluminescence (PL) diagram decreases, reducing the photogenerated electron-hole recombination rate. The photocatalyst demonstrates enhanced photocatalytic degradation of formaldehyde gas, with the degradation rate of CN-MIX/Co-a increasing from 13.28 % to 99.2 %. Furthermore, after eight cycles of use, the degradation efficiency of CN-MIX/Co-a for formaldehyde remains above 90 %, indicating high stability.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of magnetic polystyrene nanocomposite by emulsion polymerization using a photo-responsive emulsifier for efficient crude oil absorption","authors":"","doi":"10.1016/j.jphotochem.2024.116092","DOIUrl":"10.1016/j.jphotochem.2024.116092","url":null,"abstract":"<div><div>Both human health and marine life are seriously threatened by crude oil spills into bodies of water. For effective crude oil spill cleaning, we created a magnetic polystyrene (m-PS) nanocomposite. The use of magnetic nanoparticles makes crude oil absorption more environmentally friendly by making it easier to collect and recycle using an external magnetic field. To make Fe<sub>3</sub>O<sub>4</sub> nanoparticles compatible with the hydrophobic styrene monomer used in emulsion polymerization, they were treated using a hydrophobic surface modification reaction. This alteration facilitated the grafting of polystyrene (PS) chains onto the nanoparticles, which then underwent emulsion polymerization. As an emulsifier, a light-responsive amphiphilic block copolymer containing coumarin was created via reversible addition-fragmentation chain transfer polymerization. This allowed for regulated emulsification and demulsification in response to UV stimulation. The synthesized m-PS nanocomposite demonstrated a crude oil absorption capacity of up to 2.31 times of its own weight, indicating its high efficiency for crude oil spill cleanup. The synthetic emulsifier exhibited a significantly lower critical micelle concentration compared to the commercial P105 emulsifier (0.0976 against 0.354 mg/mL, respectively), indicating higher efficiency and reduced environmental impact. For a more thorough comprehension of the reported results, we also assessed the Hofmeister effect in PS produced using commercial and synthetic emulsifiers.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarkable NH3 gas sensing performance of spray deposited Tb doped WO3 thin films at room temperature","authors":"","doi":"10.1016/j.jphotochem.2024.116087","DOIUrl":"10.1016/j.jphotochem.2024.116087","url":null,"abstract":"<div><div>To evade potential health hazards associated with exposure to NH<sub>3</sub>, there has been an increasing demand for efficient gas sensors operating at room temperature (RT). In this study, thin films of Tb-doped (0–5 wt%) WO<sub>3</sub> synthesized by spray pyrolysis technique are used as a novel material for sensing NH<sub>3</sub> gas. The X-ray diffraction (XRD) pattern identified the hexagonal crystal system of WO<sub>3</sub> films and increased crystallinity for the 2 wt% Tb-doing concentration. Field emission scanning electron microscopy (FE-SEM) unveiled the distinct surface morphology of mesh-like porous structures for Tb-doped films suitable for the target gas adsorption/desorption process. Multiple photoluminescence (PL) emission peaks indicate the presence of defect states, including defect energy levels created by oxygen vacancies (O<sub>v</sub>). Optical analysis indicated shrinkage of the bandgap of WO<sub>3</sub> thin films for doping levels up to 2 wt%. Among all gas sensors, 2 wt% Tb-doped WO<sub>3</sub> exhibited exceptionally high response and low response time at 250 ppm NH<sub>3</sub> concentrations measured at room temperature (RT). The sensor’s performance for NH<sub>3</sub> gas sensing is compared with previous reports on WO<sub>3</sub>-based NH<sub>3</sub> sensors. The gas sensing mechanism in WO<sub>3</sub> is also briefly discussed.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}