Sanjay Marasini , Simon J. Dean , Simon Swift , Jagir R. Hussan , Jennifer P. Craig
{"title":"In vitro anti-biofilm efficacy of therapeutic low dose 265 nm UVC","authors":"Sanjay Marasini , Simon J. Dean , Simon Swift , Jagir R. Hussan , Jennifer P. Craig","doi":"10.1016/j.jphotobiol.2024.113091","DOIUrl":"10.1016/j.jphotobiol.2024.113091","url":null,"abstract":"<div><h3>Purpose</h3><div>Preclinical studies have confirmed the safety and efficacy of narrowband low-intensity ultraviolet C light (UVC) in managing bacterial corneal infection. To further consolidate these findings, the present study aimed to explore <em>in vitro</em> anti-biofilm efficacy of low-intensity UVC light for its potential use in biofilm-related infections.</div></div><div><h3>Methods</h3><div><em>Pseudomonas aeruginosa</em> biofilm was grown in chamber well slides for 48 h and exposed to one of the following challenges: UVC (265 nm wavelength, intensity 1.93 mW/cm<sup>2</sup>) for 15 s, 30 s, 60 s or 120 s duration, 70% propanol (positive control), or no exposure (negative control). Bacterial LIVE/DEAD staining was conducted at 1 h, 4 h, 6 h and 8 h after challenge exposures to assess the temporal pattern of biofilm inactivation, and slides were imaged using confocal microscopy. Treatment efficacy was quantified by dead biofilm biomass (volume/area - μm<sup>3</sup>/μm<sup>2</sup>) for different treatment groups at each time point.</div></div><div><h3>Results</h3><div>At each time point post-exposure, dead biofilm biomass was consistently higher in the alcohol- and UVC-challenged groups than in the unchallenged control (<em>p</em> < 0.05), suggesting a sustained biocidal impact after a given challenge. The quantity of dead biofilm biomass did not differ between UVC groups at any time point (<em>p</em> > 0.05). Observed by confocal microscopy, UVC-exposed biofilm demonstrated predominantly intermediate-stage biofilm (<em>i.e.</em>, dying state) at 1 h, which progressed to dead biofilm by 4 h.</div></div><div><h3>Conclusion</h3><div>Low doses of UVC demonstrated potent anti-biofilm activity, even in exposures as short as 15 s, the dose that has previously been deemed to be effective in managing corneal infection <em>in vivo</em>. These data support the potential for this UVC light-based technology to serve as an affordable, convenient, and effective means of treating ocular infections associated with bacterial biofilm.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"263 ","pages":"Article 113091"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142950573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brandon Chou , Katherine Krishna , Heather Durkee , Felipe Echeverri Tribin , Anam Ahmed , James Lai , Mariela C. Aguilar , Braulio C.L.B. Ferreira , Roger M. Leblanc , Harry W. Flynn Jr , Guillermo Amescua , Jean-Marie Parel , Darlene Miller
{"title":"Photodynamic antimicrobial therapy with Erythrosin B, Eosin Y, and Rose Bengal for the inhibition of fungal keratitis isolates: An in vitro study","authors":"Brandon Chou , Katherine Krishna , Heather Durkee , Felipe Echeverri Tribin , Anam Ahmed , James Lai , Mariela C. Aguilar , Braulio C.L.B. Ferreira , Roger M. Leblanc , Harry W. Flynn Jr , Guillermo Amescua , Jean-Marie Parel , Darlene Miller","doi":"10.1016/j.jphotobiol.2024.113090","DOIUrl":"10.1016/j.jphotobiol.2024.113090","url":null,"abstract":"<div><h3>Introduction</h3><div>Fungal keratitis is a leading cause of corneal blindness, with current antifungal treatments having limited efficacy. One promising treatment modality is Rose Bengal (RB) photodynamic antimicrobial therapy (PDAT) that has shown mixed success against fungal keratitis. Therefore, there is a need to explore the antimicrobial efficacy of other green-light activated photosensitizers that have deep penetration in the cornea to combat the deep fungal infections, such as Erythrosin B (EB) and Eosin Y (EY).</div></div><div><h3>Objective</h3><div>This study will explore PDAT inhibitory effects with different photosensitizers, RB, EB, and EY against two common fungal ocular isolates, <em>Aspergillus</em> spp. and <em>Fusarium</em> spp.</div></div><div><h3>Methods</h3><div>Twelve fungal isolates (<em>Fusarium</em> spp., <em>n</em> = 6, <em>Aspergillus</em> spp., n = 6) were prepared in suspension for evaluation of growth inhibition to PDAT with three photosensitizers, EB, EY, and RB. Custom green light source (λ = 518 nm, energy density = 5.4 J/cm<sup>2</sup>) was applied to the experimental groups for 15 min. Fungal growth inhibition was assessed after experimentation by analyzing the area of growth within the irradiated zone on agar plates.</div></div><div><h3>Results</h3><div>All twelve fungal isolates showed no inhibition to EB, EY, and RB without irradiation. <em>Fusarium</em> spp. were more susceptible to PDAT than <em>Aspergillus</em> spp. In all <em>Fusarium solani</em> strains, all photosensitizers with light showed full inhibition within the 47 mm diameter irradiation zone.</div></div><div><h3>Conclusion</h3><div>EB, EY, and RB PDAT demonstrated comparable antifungal inhibition against six <em>Fusarium</em> ocular isolates; these findings in conjunction with the deeper tissue penetration of EB and EY, are of interest to treat more advanced and deeper cases of fungal keratitis.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"263 ","pages":"Article 113090"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhao, Xin Nie, Yizhen Yan, Zhao Liu, Xueqing Chen, Peng Shu, Jiangming Zhong
{"title":"α-arbutin prevents UVA-induced skin photodamage via alleviating DNA damage and collagen degradation in NIH-3T3 cells","authors":"Nan Zhao, Xin Nie, Yizhen Yan, Zhao Liu, Xueqing Chen, Peng Shu, Jiangming Zhong","doi":"10.1016/j.jphotobiol.2025.113100","DOIUrl":"10.1016/j.jphotobiol.2025.113100","url":null,"abstract":"<div><div>Ultraviolet radiation (UV) causes certain side effects to the skin, and their accumulation to a certain extent can lead to accelerated aging of the skin. Recent studies suggest that α-arbutin may be useful in various disorders such as hyperpigmentation disorders, wound healing, and antioxidant activity. However, the role of α-arbutin in skin photodamage is unclear. In this study, under UVA-induced photodamage conditions, α-arbutin treated mouse skin fibroblasts (NIH-3T3) can repair DNA damage and resist apoptosis by reducing the production of reactive oxygen species (ROS) and increasing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) to orchestra AKT/GSK3β pathway. Meanwhile, α-arbutin can also regulate collagen metabolism and facilitate the replenishment of collagen by targeting the phosphorylation of SMAD3 to mediate the TGFβ/SMAD pathway in NIH-3T3. In conclusion, we found that α-arbutin can mitigate the detrimental effects of skin photodamage induced by UVA irradiation, and provides a theoretical basis for the use of α-arbutin in the treatment of skin photodamage.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"263 ","pages":"Article 113100"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142950574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichao Huang , Qian He , Peipei Zhang , Juxingsi Song , Yangkai Wang , Shaoqian Zhu , Yongfei Lv , Dayuan Zhou , Yanan Hu , Liming Zhang , Guoyan Liu , Qianqian Wang
{"title":"Single amino acid substitution analogs of marine antioxidant peptides with membrane permeability exert a marked protective effect against ultraviolet-B induced damage","authors":"Yichao Huang , Qian He , Peipei Zhang , Juxingsi Song , Yangkai Wang , Shaoqian Zhu , Yongfei Lv , Dayuan Zhou , Yanan Hu , Liming Zhang , Guoyan Liu , Qianqian Wang","doi":"10.1016/j.jphotobiol.2025.113120","DOIUrl":"10.1016/j.jphotobiol.2025.113120","url":null,"abstract":"<div><div>Ultraviolet-B (UVB) causes oxidative stress, which is implicated in skin damage and photoaging. Antioxidant peptides exhibit protective effects against UVB-induced oxidative stress and are thus regarded as potential competitors compared to synthetic antioxidants for cosmetics. In the present study, we provided a discovery pipeline for screening and modifying marine-derived antioxidant peptides, and successfully identified and characterized three novel modified peptides (WP5, LW5 and YY6) with strong antioxidant abilities. Their scavenging activities on 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical (ABTS·) and hydroxyl radical (·OH) were higher than those of glutathione (GSH) (ABTS·: 71.12 ± 3.58 %, 67.63 ± 1.65 % and 68.51 ± 0.54 % by WP5, LW5 and YY6, respectively, vs 61.51 ± 1.02 % by GSH; ·OH: 52.15 ± 1.99 %, 51.25 ± 1.29 % and 53.06 ± 2.23 % by WP5, LW5 and YY6, respectively, vs 42.69 ± 1.18 % by GSH). The modified peptides can effectively penetrate cell membrane and significantly enhance cell viability against UVB-induced oxidative stress in human keratinocyte (HaCaT) cells by reducing the levels of reactive oxygen species and malondialdehyde and increasing the activity of intracellular antioxidant enzymes, including superoxide dismutase and glutathione peroxidase. Additionally, the modified peptides decreased the expression of tumor necrosis factor-α, interleukin-6 and interleukin-1β in UVB-induced cell inflammatory response, exhibiting a potent anti-inflammatory activity. Further investigation into the molecular mechanism revealed that the modified peptides not only decreased cell apoptosis by down-regulating the apoptosis factors Bax/Bcl-2 and c-PARP, but also increased the antioxidant capacity of HaCaT cells by interrupting the interaction between Kelch-like ECH associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), and ultimately promoting Nrf2 activation. The findings suggest a promising strategy for accelerating the discovery of antioxidant peptides and cell-penetrating peptides, providing valuable insights for pharmaceutical and cosmetic industries.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113120"},"PeriodicalIF":3.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143241303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ICG-ALA complex for improved phototherapy of cancer","authors":"Mahshid Hashemkhani , Alphan Sennaroğlu , Havva Yağci Acar","doi":"10.1016/j.jphotobiol.2025.113121","DOIUrl":"10.1016/j.jphotobiol.2025.113121","url":null,"abstract":"<div><div>5-Aminolevulinic acid (ALA) based photodynamic therapy (PDT) is a clinically approved therapeutic method for cancer treatment. Indocyanine green (ICG) is on the other hand an FDA-approved fluorescent dye that has been widely used in medical imaging in the near-infrared (NIR), and lately recognized as an agent to induce photothermal therapy (PTT). However, the hydrophilicity of ALA and rapid degradation of ICG in aqueous or physiological media as well as their instability limit their clinical application. Besides, the combination of PDT and PTT is a promising alternative to a single therapy approach. Herein, electrostatic binding of ALA to ICG is proposed to bypass such handicaps and provide enhanced therapeutic outcomes with simultaneous PDT and PTT combination. ICG-ALA exhibited excellent biocompatibility up to 50 μg ICG/mL-10 mM ALA in the dark in both SKBR3 and MDA-MB-231 cell lines with higher cell uptake compared to free ALA or ICG. ICG-ALA treatment coupled with 640/808 nm 5 min co-irradiation caused significantly stronger phototoxicity in both cancer cell lines at very low concentrations, reaching near complete loss of viability at 2.5 μg ICG /mL-0.5 mM ALA equivalent concentration of the ICG-ALA. The temperature increase observed during irradiation of the cells and the elevated oxidative stress resulting in the release of caspase 3/7 agrees well with the onset of PTT and PDT. In addition, ICG-ALA demonstrates visualization of cancer cells in both NIR (ICG) and visible (PpIX) regions allowing imaging-guided phototherapy.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113121"},"PeriodicalIF":3.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143350542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiqi Fu , Jiali Yang , Hui Jiang , Haokuan Qin , Angze Li , Longfei Huo , Muqing Liu
{"title":"Pulsed red light photobiomodulation ameliorates oxytocin-induced primary dysmenorrhea in mice by inhibiting oxidative stress and lipid accumulation","authors":"Qiqi Fu , Jiali Yang , Hui Jiang , Haokuan Qin , Angze Li , Longfei Huo , Muqing Liu","doi":"10.1016/j.jphotobiol.2025.113119","DOIUrl":"10.1016/j.jphotobiol.2025.113119","url":null,"abstract":"<div><div>Photobiomodulation (PBM) has gained attention as a kind of anti-pain or anti-inflammation therapy, yet its efficacy in mitigating the symptoms and underlying metabolic disturbances of primary dysmenorrhea remains underexplored. Here, 630 nm light reduced menstrual pain and prostaglandin F<sub>2a</sub>/prostaglandin E<sub>2</sub> dysregulation, regulated oxidation and lipid peroxidation levels, and improved uterus damage in oxytocin-induced mice. Notably, pulsed wave (PW) treatment exhibited superior efficacy compared to continuous wave application. Hence, this research focused on the effects of 630 nm PW on oxytocin-induced mice by examining changes in the uterine transcriptome and plasma metabolome. Results from integrated analyses revealed significant modifications primarily in antioxidant and lipid metabolism pathways, alongside shifts in biomarkers related to arachidonic acid metabolism. Quantitative real-time PCR confirmed the downregulation of critical genes associated with oxidative stress and inflammation, as well as the suppression of uterine smooth muscle contractions and lipid overaccumulation. These findings support the potential of 630 nm PW PBM as a viable option for clinical interventions in dysmenorrhea management.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113119"},"PeriodicalIF":3.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabelle Almeida de Lima , Caio de Azevedo Lima , Sarah Raquel de Annunzio , Fernanda de Oliveira , Silvio Silvério da Silva , Carla Raquel Fontana , Valéria de Carvalho Santos-Ebinuma
{"title":"Fungal derived dye as potential photosensitizer for antimicrobial photodynamic therapy","authors":"Isabelle Almeida de Lima , Caio de Azevedo Lima , Sarah Raquel de Annunzio , Fernanda de Oliveira , Silvio Silvério da Silva , Carla Raquel Fontana , Valéria de Carvalho Santos-Ebinuma","doi":"10.1016/j.jphotobiol.2025.113116","DOIUrl":"10.1016/j.jphotobiol.2025.113116","url":null,"abstract":"<div><div>Photodynamic therapy (PDT) combines light with a photosensitizing agent to target and destroy abnormal cells or pathogens, offering a non-invasive and precise approach. Applying microbial dyes in PDT presents a great opportunity because these compounds may absorb specific wavelengths of light, generating reactive oxygen species (ROS) that induce oxidative stress, leading to cell or microbial death. This study evaluated the extract of <em>Talaromyces amestolkiae</em> containing azaphilone red dyes obtained from cultivation process as photosensitizer (PS) in antimicrobial photodynamic therapy (aPDT). Initially the crude extract was obtained in incubator shaker varying the culture media composition. Following, the crude extract containing the red dyes exhibited non-toxicity in dark conditions across all concentrations tested. PDT experiments with different amounts of the crude extract at a light dose of 80 J.cm<sup>-2</sup> and upon irradiation at 460 nm was studied. A complete reduction of <em>Escherichia coli</em> and approximately 2 log<sub>10</sub> reductions of <em>Staphylococcus aureus, Cutibacterium acnes</em> and <em>Enterococcus faecalis</em> was achieved using 25 % (v.v<sup>-1</sup>) of the crude extract while 50 % (v.v<sup>-1</sup>) of the crude extract led to a complete reduction of both <em>E. coli</em> and <em>S. aureus</em>, and around 5 log<sub>10</sub> reductions of <em>C. acnes</em> and <em>E. faecalis</em>. Importantly, minimal photodegradation of the PS occurred during irradiation across all concentrations studied. These findings highlight the potential of <em>T. amestolkiae</em>-derived red dyes extract for use in aPDT, demonstrating non-toxicity in the absence of light, good aqueous solubility, high photostability, and strong microbial reduction capabilities under specific light conditions.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113116"},"PeriodicalIF":3.9,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143350541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohana B. Palacios , Sebastián O. Simonetti , Claudia Hernández Chavez , María G. Álvarez , Paula V. Cordero , Emma A. Cuello , Edwin J. González López , Enrique L. Larghi , Maximiliano L. Agazzi , Edgardo N. Durantini , Daniel A. Heredia
{"title":"“Illuminated Glycoporphyrins”: A photodynamic approach for Candida albicans inactivation","authors":"Yohana B. Palacios , Sebastián O. Simonetti , Claudia Hernández Chavez , María G. Álvarez , Paula V. Cordero , Emma A. Cuello , Edwin J. González López , Enrique L. Larghi , Maximiliano L. Agazzi , Edgardo N. Durantini , Daniel A. Heredia","doi":"10.1016/j.jphotobiol.2025.113105","DOIUrl":"10.1016/j.jphotobiol.2025.113105","url":null,"abstract":"<div><div>The continuous increase in the incidence of invasive mycoses, particularly those caused by <em>Candida albicans</em>, is a relevant health issue worldwide due to the lack of effective antifungals and the constant emergence of resistant strains. One of the most promising therapies to treat infections caused by resistant microorganisms is photodynamic inactivation (PDI). The development of novel photosensitizers (PSs) with suitable properties is a key factor to consider when optimizing this therapy. In this work, we designed, synthesized, and characterized four glycoporphyrins functionalized with <em>S</em>-galactose (acetylated and deacetylated) and varying the number of tertiary amino groups as precursors of cationic centers, which can be activated by protonation at physiological pH. The amino and glycosyl groups were introduced to enhance interaction with the microbial cell wall, increase hydrophilicity, and evaluate their combined effect on PS efficiency in photoinactivation. All derivatives presented the characteristic absorption and emission properties of the porphyrin macrocycle. Moreover, the glycoporphyrins were capable of generating singlet oxygen and superoxide anion radical. The photophysical and photodynamic properties were not affected by the different substitution patterns on the porphyrin core. PDI treatments of <em>C. albicans</em> cultures, treated with 5 μM of the PS and irradiated for 30 min, produced cellular inactivation of ∼3.5 log for glycoporphyrins with cationic centers. Furthermore, PDI of <em>C. albicans</em> mediated by glycoporphyrins was potentiated by the addition of KI. Under these conditions, a significant enhancement in cellular death was observed, achieving complete eradication of the treated cell suspensions. Moreover, glycoporphyrins containing pH-activable groups, combined with KI, showed outstanding efficacy against <em>C. albicans</em> pseudohyphae. These <em>in vitro</em> findings underscore the significant impact of substitution patterns on antimicrobial action. To our knowledge, this study marks the first application of glycosylated porphyrin derivatives containing pH-activatable cationic groups in the photoinactivation of <em>C. albicans</em>, paving the way for the development of novel derivatives with potential applications as effective antifungal PSs.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113105"},"PeriodicalIF":3.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effectiveness of Photobiomodulation (low-level laser therapy) on treatment of oral mucositis (OM) induced by chemoradiotherapy in head and neck cancer patients.","authors":"Shadi Barati , Safa Motevasseli , Hamid Saeidi Saedi , Pantea Amiri , Reza Fekrazad","doi":"10.1016/j.jphotobiol.2025.113115","DOIUrl":"10.1016/j.jphotobiol.2025.113115","url":null,"abstract":"<div><h3>Purpose</h3><div>Mucositis is a common and debilitating side effect of cancer treatment, causing significant pain and discomfort. This study aimed to evaluate the effectiveness of Photobiomodulation in treating mucositis induced by chemoradiotherapy in cancer patients.</div></div><div><h3>Methods</h3><div>This randomized, single-blind clinical trial involved 36 patients with grade 3‐4 oral mucositis. The test group (<em>n</em> = 18) received diode portable laser therapy (810 nm wavelength, 200 mW power, 6 J/cm<sup>2</sup> energy density) for 4 days. The control group (<em>n</em> = 18) used a Diphenhydramine + Almgs mouthwash (50‐50% mixture, 15 ml, every 6 h for 4 days). Lesions were assessed before treatment, one week after, and again at one month.</div></div><div><h3>Results</h3><div>Pain scores in the laser group decreased significantly over time (<em>P</em> < 0.05). Patients in the laser group reported better quality of life and reduced oral discomfort compared to the control group (P < 0.05). The severity of mucositis significantly decreased in the laser group within the first week (P < 0.05), though no significant difference was observed at one month (<em>P</em> = 0.158).</div></div><div><h3>Conclusion</h3><div>The study demonstrates that Photobiomodulation is a more effective and efficient method for reducing pain, tingling, and improving quality of life in both the short and long term. It also reduces the severity of oral mucositis in the short term for patients with head and neck cancer undergoing chemoradiotherapy.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113115"},"PeriodicalIF":3.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of different lights in solving the marine biofouling problem of uranium extraction from seawater","authors":"Meng Yan, Dadong Shao","doi":"10.1016/j.jphotobiol.2025.113114","DOIUrl":"10.1016/j.jphotobiol.2025.113114","url":null,"abstract":"<div><div>Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as <em>V. alginolyticus</em>), and further control its extracellular polymeric substances (EPS). Microorganism community results clarify that UV light well represses the reproduction and survival of marine microorganisms under different conditions (such as temperature and region), which is in favor of U(VI) extraction. The adsorption capacity of classical U(VI) extraction material poly(amidoxime) (PAO) for U(VI) outstandingly recycled from 47.5 mg/g to 68.5 mg/g after UV irradiated for 12 h at pH 8.2 and 25 °C. UV light can well solve the marine biofouling problem of U(VI) extraction from seawater.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113114"},"PeriodicalIF":3.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}