{"title":"A review of OSHA-permissible exposure limits for occupational carcinogens in relation to quantitative risk assessments based on epidemiological findings.","authors":"Robert M Park","doi":"10.1080/15459624.2024.2406234","DOIUrl":"10.1080/15459624.2024.2406234","url":null,"abstract":"<p><p>A very small proportion of all chemicals in commerce have <i>occupational exposure limits</i> (OELs) based on quantitative risk assessments which require estimates of exposure-response relationships (XRs). For only 18 of the 94 chemicals declared by NIOSH to be carcinogens were human XRs reported in or calculable from published reports. For the 18 carcinogens, 96 such XRs could be derived (corresponding to chemicals with multiple associated cancer end-points and/or multiple source studies). Twenty-four of 96 XR estimates came directly from reported statistical models (on continuous cumulative exposure), 45 were derived from summary study-population attributes, and 27 came from categorical analyses. Using the 96 XRs, OEL conferring one-per-thousand excess lifetime risk were calculated. OSHA's OEL, <i>permissible exposure limits</i> (PEL) were then compared to OEL derived from the 96 XRs. For 88 of the 96 calculated OELs (for which a corresponding PEL exists) all but 10 fell below the current PEL. Thirty-four OEL estimates were 10- to 100-fold below the PEL and 21 were greater than 100-fold below the PEL. This same pattern was observed using the different methods for deriving XRs. These findings can guide priorities in setting standards and the method is not limited to carcinogens.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"1-14"},"PeriodicalIF":1.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mamadou Niang, Tiina Reponen, Glenn Talaska, Jun Ying, John F Reichard, Alison Pecquet, Andrew Maier
{"title":"Preliminary human health risk assessment of antibiotic exposures in human waste handling occupations.","authors":"Mamadou Niang, Tiina Reponen, Glenn Talaska, Jun Ying, John F Reichard, Alison Pecquet, Andrew Maier","doi":"10.1080/15459624.2024.2405405","DOIUrl":"10.1080/15459624.2024.2405405","url":null,"abstract":"<p><p>Exposure to biosolids in human waste handling occupations is associated with a risk for illness due to microbial infections. Although several years of exposure to biosolids might be hypothesized to be a prophylaxis against infection, the risks associated with infections from antibiotic-resistant organisms can also be a potential concern. Therefore, this study aimed to conduct a screening level risk assessment by deriving occupational exposure limits (OELs) characterizing the risks of adverse health effects among workers in human waste handling occupations with a focus on exposure to two pharmaceuticals commonly found in biosolids: ciprofloxacin (CIP) and azithromycin (AZ). Epidemiological and exposure studies of workers exposed to biosolids were identified through searches of major scientific databases. Screening OELs (sOELs) for these antibiotics were derived using a standardized methodology. The airborne concentrations of CIP and AZ antibiotics were determined using an exposure factors approach. The health-based exposure limits (i.e., sOELs) and the acceptable daily exposure (ADE) values for both of these antibiotics were derived as 80 μg/m<sup>3</sup> and 12 μg/kg-day, respectively. An exposure factor approach suggested that inhalation route exposures to CIP and AZ are well below the sOELs and ADE daily doses, and likely too low to cause direct adverse health effects through antibiotic inhalation. A critical review of epidemiological studies on different occupations handling biosolids showed that the workers in industries with potential biosolids exposure have experienced an increased incidence of microbial-exposure-related illness. The health effects seen in the workers have been attributed to bacterial, viral, and protozoan infections. To the extent that bacteria are the pathogen of concern, it is not clear whether these bacteria are resistant to antibiotics commonly found in biosolids. It is also unclear whether the presence of antibiotics or antibiotic-resistant bacteria increases the susceptibility of these workers. Additional studies will provide more definitive estimates of inhalation and dermal exposures to CIP and AZ and could verify the exposure estimates in this study based on the literature and common exposure factors.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"721-740"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheryl R Montgomery, Brooke N Stevens, Michelle Bourne, Heather J Theel
{"title":"A field sampling and analysis protocol for assessing occupational exposure and risk from military munition storage magazines.","authors":"Cheryl R Montgomery, Brooke N Stevens, Michelle Bourne, Heather J Theel","doi":"10.1080/15459624.2024.2389282","DOIUrl":"10.1080/15459624.2024.2389282","url":null,"abstract":"<p><p>An occupational health study was conducted inside reinforced-concrete earth-covered munitions storage magazines (ECMs) at Fort Wingate Depot Activity (FWDA), a former military facility near Gallup, New Mexico. A two-phased approach was used: (1) HEPA vacuuming of bulk dust and (2) wipe sample verification post-vacuuming. Site-specific occupational health criteria were derived to evaluate potential risk from inhalation of bulk dust (Phase 1) and dermal contact of residual dust (Phase 2). In Phase 1, no explosives detections exceeded site-specific screening criteria. Any explosives detected, with or without criteria were carried forward into Phase 2. In Phase 2, no exceedances were noted for detected explosives with criterion. Using structure/reactivity characteristics within the explosives category, surrogates were assigned to the six (6) explosives without occupational health screening criteria. Based upon structural similarities within the analysis category, assignments of surrogates to explosives without criteria did not adversely impact the study conclusions. In Phase 1, lead was detected in bulk dust in all 35 igloos and all detections exceeded the applicable criterion for commercial/industrial workers. In Phase 2, all lead detections in wipe samples were below the wipe screening criteria. Study results indicated the ECM interiors posed no unacceptable dermal occupational risk for explosives or lead residues following bulk dust removal. High-efficiency particulate air (HEPA) filter vacuuming of interior bulk dust in ECMs at FWDA reduced occupational risk/hazard for exposure via inhalation and dermal contact for commercial/industrial worker activities under worst-case exposure conditions. Both phases of this sampling design are widely applicable, provided the site-specific assumptions made for this study are evaluated for suitability to another specific application and adjusted if needed.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"687-695"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"\"The Action Level<sup>®</sup>\".","authors":"J Thomas Pierce","doi":"10.1080/15459624.2024.2417577","DOIUrl":"10.1080/15459624.2024.2417577","url":null,"abstract":"","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"D19-D20"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sander Ruiter, Remy Franken, Tanja Krone, Maaike Le Feber, Jan Gunnink, Eelco Kuijpers, Susan Peters, Roel Vermeulen, Anjoeka Pronk
{"title":"Spatiotemporal modeling of occupational particulate matter using personal low-cost sensor and indoor location tracking data.","authors":"Sander Ruiter, Remy Franken, Tanja Krone, Maaike Le Feber, Jan Gunnink, Eelco Kuijpers, Susan Peters, Roel Vermeulen, Anjoeka Pronk","doi":"10.1080/15459624.2024.2389279","DOIUrl":"10.1080/15459624.2024.2389279","url":null,"abstract":"<p><p>Occupational exposure to particulate matter (PM) can result in multiple adverse health effects and should be minimized to protect workers' health. PM exposure at the workplace can be complex with many potential sources and fluctuations over time, making it difficult to control. Dynamic maps that visualize how PM is distributed throughout a workplace over time can help in gaining better insights into when and where exposure occurs. This study explored the use of spatiotemporal modeling followed by kriging for the development of dynamic PM concentration maps in an experimental setting and a workplace setting. Data was collected using personal low-cost PM sensors and an indoor location tracking system, mounted on a moving robot or worker. Maps were generated for an experimental study with one simulated robot worker and a workplace study with four workers. Cross-validation was performed to evaluate the performance and robustness of three types of spatiotemporal models (metric, separable, and summetric) and, as an additional external validation, model estimates were compared with measurements from sensors that were placed stationary in the laboratory or workplace. Spatiotemporal models and maps were generated for both the experimental and workplace studies, with average root mean squared error (RMSE) from 10-fold cross-validation ranging from 7-12 and 73-127 µg/m<sup>3</sup>, respectively. Workplace models were relatively more robust compared to the experimental study (relative SD ranging from 8-14% of the average RMSE <i>vs.</i> 27-56%, respectively), presumably due to the larger number of parallel measurements. Model estimates showed low to moderate fits compared to stationary sensor measurements (R<sup>2</sup> ranging from 0.1-0.5), indicating maps should be interpreted with caution and only used indicatively. Together, these findings show the feasibility of using spatiotemporal modeling for generating dynamic concentration maps based on personal data. The described method could be applied for exposure characterization within comparable study designs or can be expanded further, for example by developing real-time, location-based worker feedback systems, as efficient tools to visualize and communicate exposure risks.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"696-708"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molly West, Skylar Brown, Elizabeth Noth, Joseph Domitrovich, Kathleen Navarro DuBose
{"title":"A review of occupational exposures to carcinogens among wildland firefighters.","authors":"Molly West, Skylar Brown, Elizabeth Noth, Joseph Domitrovich, Kathleen Navarro DuBose","doi":"10.1080/15459624.2024.2388532","DOIUrl":"10.1080/15459624.2024.2388532","url":null,"abstract":"<p><p>Wildfires can negatively impact the health and well-being of wildland firefighters through a variety of exposure pathways. Many studies have measured acute health effects from occupational exposure to pollutants in wildfire smoke; however, research specifically examining cancer risks from exposure to carcinogens is limited. This review aimed to better understand cancer risk in this occupation by assessing the existing evidence of exposures and summarizing measured concentrations of carcinogens among wildland firefighters. A systematic search was conducted to identify scientific papers using the following databases: Medline(OVID), Embase(OVID), PsycINFO(OVID), Cochrane Library, CINAHL(EBSCOHost), EconLit(EBSCOHost), Scopus, Agricultural and Environmental Science Collect(ProQuest), and NIOSHTIC-2. Forty-nine papers were identified that met eligibility criteria. Across the papers, 31 carcinogens were identified and quantified using a variety of assessment methods. Papers measured particulate matter (<i>N</i> = 26), polycyclic aromatic hydrocarbons (<i>N</i> = 12), volatile organic compounds (<i>N</i> = 14), crystalline silica (<i>N</i> = 5), black carbon (<i>N</i> = 4), asbestos (<i>N</i> = 3), radionuclides (<i>N</i> = 7), and metals (<i>N</i> = 2). Most papers measured inhalation exposures through traditional air sampling methods, but a subset of exposures to polycyclic aromatic hydrocarbons (<i>N</i> = 8), as well as heavy metals (<i>N</i> = 1), were measured through urinary biomarkers and naphthalene was measured using dermal wipe samples (<i>N</i> = 2). Although the heterogeneity of exposure assessment methods made direct comparison of concentrations difficult, the papers provide consistent evidence that wildland firefighters are regularly exposed to carcinogens. All wildland fire personnel should continue to implement recommended mitigation strategies and support new mitigations to reduce exposure to carcinogens on the job.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"741-764"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arman Peyravi, Emily Quecke, Elena Kosareva, Patricia Dolez, Alexander Doroshenko, Stephanie Smith, Bernadette Quemerais, Zaher Hashisho
{"title":"Evaluation of masks and mask material suitability for bioaerosol capture.","authors":"Arman Peyravi, Emily Quecke, Elena Kosareva, Patricia Dolez, Alexander Doroshenko, Stephanie Smith, Bernadette Quemerais, Zaher Hashisho","doi":"10.1080/15459624.2024.2394613","DOIUrl":"10.1080/15459624.2024.2394613","url":null,"abstract":"<p><p>Non-medical masks such as disposable non-medical, commercially produced cloth, and homemade masks are not regulated like surgical masks. Their performance, in terms of filtration efficiency and breathability, is variable and unreliable. This research provides a quantitative evaluation of various non-medical masks, assesses their fabrics' potential for the reduction of transmission of bioaerosols such as the SARS-CoV-2 virus, and compares them to surgical masks and N95 filtering facepiece respirators. Using a testing line with a NaCl challenge aerosol, four types of commercial reusable cloth masks, two types of disposable non-medical masks, three types of surgical or N95 masks, and seven types of commonly available materials were tested individually and in combinations. The testing line and procedure were adapted from the ASTM F2299-03: Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by Particulates Using Latex Spheres testing method used for testing surgical masks. Filtration efficiencies at 0.15 µm particle diameter at a face velocity of 25 cm/sec for commercial cloth masks, disposable non-medical masks, surgical masks, commercial mask combinations, and homemade combinations ranged from 16-29%, 39-76%, 91-97%, 51-95%, and 45-94%, respectively. The pressure drop results for the different masks and material combinations were all under 3 mm H<sub>2</sub>O/cm<sup>2</sup> except for one material configuration. This study builds on other research that looks at individual materials and masks by testing combinations alongside the individual masks and materials. With proper layering, household materials can achieve the filtration efficiency and low pressure drop requirements of surgical masks. The filtration capabilities of disposable and cloth mask fabrics vary considerably meaning that they are not a reliable or consistent facemask option, regardless of fit.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"709-720"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of chlorine dioxide exposure in an Australian gnotobiotic mouse research facility.","authors":"Donna M Easton, Peter McGarry, Kelly Johnstone","doi":"10.1080/15459624.2024.2394102","DOIUrl":"10.1080/15459624.2024.2394102","url":null,"abstract":"<p><p>Exposure to chlorine dioxide by staff working in a gnotobiotic mouse facility at an Australian research institute was measured to determine whether current controls were sufficient to ensure their exposure remains below the current Australian workplace exposure standard. A combination of workplace surveys, interviews with workers, and personal sampling was undertaken to understand the workplace, identify higher-risk tasks, and measure the concentration of chlorine dioxide in the air where the workers conduct routine tasks involving the use of a chlorine dioxide-based disinfectant. Personal sampling utilized the validated Occupational Safety and Health Administration (OSHA) method ID-202, with minor alterations. The tasks identified as being associated with higher airborne exposure to chlorine dioxide were the use of an atomizer to fill isolator ports with aerosolized disinfectant and the use of a disinfectant dunk tank to submerge and surface decontaminate objects. The current work practices in the gnotobiotic facility were found to be compliant with the current 8-hr time-weighted average (TWA) limit of 0.1 ppm (0.28 mg/m<sup>3</sup>) but were not compliant with the 15-min short-term exposure limit (STEL) of 0.3 ppm (0.83 mg/m<sup>3</sup>). Improvements in exposure controls, such as implementing the use of a fume cupboard (hood) or other local ventilation when activating the disinfectant solution and improving the utilization of respiratory protective equipment, are therefore required to meet the STEL, but it is recommended that such improvements are also aimed at meeting the proposed Peak limitation of 0.1 ppm that is expected to soon be adopted by Safe Work Australia, replacing the current TWA-8hr and STEL exposure standards.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"677-686"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B Surya Kumar Chhetry, K N Dewangan, Nikhil Kulkarni
{"title":"Respirable dust and crystalline silica exposure among rice mill workers of northeast India.","authors":"B Surya Kumar Chhetry, K N Dewangan, Nikhil Kulkarni","doi":"10.1080/15459624.2024.2392811","DOIUrl":"10.1080/15459624.2024.2392811","url":null,"abstract":"<p><p>Crystalline silica is a Group I lung carcinogen primarily known as a causative agent for silicosis. A study was performed to quantify respirable dust, and respirable crystalline silica (RCS) in the rice mills of northeast India. Seventy-two respirable dust samples were collected from the worker's breathing zone from four rice mills at three locations: feeding, sieving, and polishing sections for two paddy varieties: Ranjit and Sali. The National Institute of Occupational Safety and Health (NIOSH), method #7602, was used to determine RCS. The results show that geometric mean TWA dust and RCS emissions in the rice mills varied from 3.97 to 455.00 mg/m<sup>3</sup> and 0.02 to 5.38 mg/m<sup>3</sup>, respectively. RCS exposures were higher during milling of the Sali variety paddy (GM: 0.76 mg/m<sup>3</sup>) than the Ranjit variety paddy (GM: 0.25 mg/m<sup>3</sup>). Respirable dust and RCS emissions were considerably higher in the feeding and sieving sections than in the polishing section. Respirable dust and RCS exposure varied significantly (<i>p</i> < 0.001) with paddy variety. Respirable dust and RCS were highly correlated for different rice mills; however, the proportion of RCS in the dust was higher in the Sali variety paddy than in the Ranjit variety paddy. RCS exposure to the workers at the feeding and sieving sections was observed to be higher than the occupational exposure limits (OELs) published by Safe Work Australia, American Conference of Governmental Industrial Hygienists (ACGIH), National Institute for Occupational Safety and Health (NIOSH), Health and Safety Executive (HSE), and Factories Amendment Act, 1987, Government of India.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"655-665"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregory D Kearney, Satomi Imai, Anna Doub, Rick Langley
{"title":"Fatal incidents among tree care workers in the United States: A case series approach.","authors":"Gregory D Kearney, Satomi Imai, Anna Doub, Rick Langley","doi":"10.1080/15459624.2024.2366214","DOIUrl":"10.1080/15459624.2024.2366214","url":null,"abstract":"<p><p>For over three decades, tree care workers in the United States have experienced disproportionately high rates of fatal injuries. While the types of fatalities have been well documented, few studies have used a qualitative approach to examine underlying circumstances and other contributing risk factors. In this study, a total of 69 investigative fatal injury reports spanning from 1987 to 2023 from the National Institute of Occupational Safety and Health (NIOSH) were reviewed and assessed. Overall, most fatal work incidents resulted from falls from trees, being struck by tree sections or branches, being caught, or dragged into equipment (e.g., woodchippers, stump grinders), and electrocutions. Over 23.0% of decedents had been on the job one year or less at the time of death. An estimated 58.0% of employers lacked a safety plan, and only 39.1% provided job training to employees. Recurring safety assessment recommendations stressed that employers and workers conduct thorough job hazard assessments, provide proper training, and develop and implement a work safety plan. These findings support current initiatives to implement public health policy action to protect tree care workers. Additional safety measures must be considered for new and vulnerable workers, before actively performing tree care work. The persistent occurrences of these fatal incidents demand a call to action, necessitating the adoption of a national policy that establishes uniform safety standards and mandates comprehensive training. Implementing these decisive measures will not only protect workers but also reduce costly accidents and insurance premiums, decrease lost productivity, and promote a culture of safety within the industry.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"629-637"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}