Journal of Microbiology最新文献

筛选
英文 中文
Whole-Genome Sequencing Reveals the Population Structure and Genetic Diversity of Salmonella Typhimurium ST34 and ST19 Lineages. 全基因组测序揭示了鼠伤寒沙门氏菌 ST34 和 ST19 系的种群结构和遗传多样性。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-10-01 Epub Date: 2024-11-04 DOI: 10.1007/s12275-024-00170-9
Zhen-Xu Zhuo, Yu-Lian Feng, Xi-Wei Zhang, Hao Liu, Fang-Yin Zeng, Xiao-Yan Li
{"title":"Whole-Genome Sequencing Reveals the Population Structure and Genetic Diversity of Salmonella Typhimurium ST34 and ST19 Lineages.","authors":"Zhen-Xu Zhuo, Yu-Lian Feng, Xi-Wei Zhang, Hao Liu, Fang-Yin Zeng, Xiao-Yan Li","doi":"10.1007/s12275-024-00170-9","DOIUrl":"10.1007/s12275-024-00170-9","url":null,"abstract":"<p><p>Salmonella Typhimurium is an invasive gastrointestinal pathogen for both humans and animals. To investigate the genetic framework and diversity of S. Typhimurium, a total of 194 S. Typhimurium isolates were collected from patients in a tertiary hospital between 2020 and 2021. Antimicrobial susceptibility testing was used to confirm the resistance phenotype. Whole-genome sequencing and bioinformatics analysis were performed to determine the sequence type, phylogenetic relationships, resistance gene profiles, Salmonella pathogenicity island (SPI) and the diversity of the core and pan genome. The result showed that 57.22% of S. Typhimurium isolates were multidrug resistant and resistance of total isolates to the first-line drug ciprofloxacin was identified in 60.82%. The population structure of S. Typhimurium was categorized into three lineages: ST19 (20.10%, 39/194), ST34-1 (47.42%, 92/194) and ST34-2 (40.65%, 63/194), with the population size exhibiting increasing trends. All lineages harbored variety of fimbrial operons, prophages, SPIs and effectors that contributed to the virulence and long-term infections of S. Typhimurium. Importantly, ST34-1 lineage might potentially be more invasive due to the possession of SPI1-effector gene sopE which was essential for the proliferation, internalization and intracellular presence of S. Typhimurium in hosts. Multiple antimicrobial resistance genes were characteristically distributed across three lineages, especially carbapenem genes only detected in ST34-1&2 lineages. The distinct functional categories of pan genome among three lineages were observed in metabolism, signaling and gene information processing. This study provides a theoretical foundation for the evolved adaptation and genetic diversity of S. Typhimurium ST19 and ST34, among which ST34 lineages with multidrug resistance and potential hypervirulence need to pay more attention to epidemiological surveillance.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"859-870"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Analyses of DNA Double-Strand Break Repair Pathways in Tandem Arrays of HXT Genes of Saccharomyces Cerevisiae. 勘误:对酿酒酵母 HXT 基因串联阵列中 DNA 双链断裂修复途径的分析
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-10-01 DOI: 10.1007/s12275-024-00127-y
Ju-Hee Choi, Ye-Seul Lim, Min-Ku Kim, Sung-Ho Bae
{"title":"Erratum: Analyses of DNA Double-Strand Break Repair Pathways in Tandem Arrays of HXT Genes of Saccharomyces Cerevisiae.","authors":"Ju-Hee Choi, Ye-Seul Lim, Min-Ku Kim, Sung-Ho Bae","doi":"10.1007/s12275-024-00127-y","DOIUrl":"10.1007/s12275-024-00127-y","url":null,"abstract":"","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"931"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea. 东海表层沉积物中好氧氨氧化微生物的环境适应性及其在氨氧化过程中的作用
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-10-01 Epub Date: 2024-08-30 DOI: 10.1007/s12275-024-00166-5
Wenhui Li, Yu Zhen, Yuhong Yang, Daling Wang, Hui He
{"title":"Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea.","authors":"Wenhui Li, Yu Zhen, Yuhong Yang, Daling Wang, Hui He","doi":"10.1007/s12275-024-00166-5","DOIUrl":"10.1007/s12275-024-00166-5","url":null,"abstract":"<p><p>This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 10<sup>2</sup> to 2.17 × 10<sup>6</sup> copies per gram of sediment and from 6.6 × 10<sup>1</sup> to 7.65 × 10<sup>4</sup> copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"845-858"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Effects of the Loss of Mismatch Repair Genes on Single-Strand Annealing Between Divergent Sequences in Saccharomyces cerevisiae. 勘误:错配修复基因缺失对酿酒酵母中不同序列间单链退火的影响
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-10-01 DOI: 10.1007/s12275-024-00126-z
Ye-Seul Lim, Ju-Hee Choi, Kyu-Jin Ahn, Min-Ku Kim, Sung-Ho Bae
{"title":"Erratum: Effects of the Loss of Mismatch Repair Genes on Single-Strand Annealing Between Divergent Sequences in Saccharomyces cerevisiae.","authors":"Ye-Seul Lim, Ju-Hee Choi, Kyu-Jin Ahn, Min-Ku Kim, Sung-Ho Bae","doi":"10.1007/s12275-024-00126-z","DOIUrl":"10.1007/s12275-024-00126-z","url":null,"abstract":"","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"929"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation. Lactobacillus gasseri BNR17和Limosilactobacillus fermentum ABF21069通过产生外多糖和β-氧化作用改善高蔗糖诱发的肥胖和脂肪肝。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-10-01 Epub Date: 2024-10-17 DOI: 10.1007/s12275-024-00173-6
Yu Mi Jo, Yoon Ji Son, Seul-Ah Kim, Gyu Min Lee, Chang Won Ahn, Han-Oh Park, Ji-Hyun Yun
{"title":"Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation.","authors":"Yu Mi Jo, Yoon Ji Son, Seul-Ah Kim, Gyu Min Lee, Chang Won Ahn, Han-Oh Park, Ji-Hyun Yun","doi":"10.1007/s12275-024-00173-6","DOIUrl":"10.1007/s12275-024-00173-6","url":null,"abstract":"<p><p>Obesity and metabolic dysfunction-associated fatty liver disease (MAFLD) are prevalent metabolic disorders with substantial global health implications that are often inadequately addressed by current treatments and may have side effects. Probiotics have emerged as promising therapeutic agents owing to their beneficial effects on gut health and metabolism. This study investigated the synergistic effects of a probiotic combination of BNR17 and ABF21069 on obesity and MAFLD in C57BL/6 mice fed a high-sucrose diet. The probiotic combination significantly reduced body weight and fat accumulation compared with the high-sucrose diet. It also alleviated elevated serum leptin levels induced by a high-sucrose diet. Histological analysis revealed a significant reduction in white adipose tissue and fatty liver in the mice treated with the probiotic combination. Furthermore, increased expression of genes related to β-oxidation, thermogenesis, and lipolysis suggested enhanced metabolic activity. The probiotic groups, particularly the BNR17 group, showed an increase in fecal exopolysaccharides, along with a tendency toward a lower expression of intestinal sugar transport genes, indicating reduced sugar absorption. Additionally, inflammatory markers in the liver tissue exhibited lower expression in the ABF21069 group than in the HSD group. Despite each strain in the combination group having distinct characteristics and functions, their combined effect demonstrated synergy in mitigating obesity and MAFLD, likely through the modulation of fecal exopolysaccharides content and improvement in lipid metabolism. These findings underscore the potential of probiotic supplementation as a promising assistant therapy for managing obesity and MAFLD and provide valuable insights into its therapeutic mechanisms in metabolic disorders.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"907-918"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Adaption Strategies of Abundant and Rare Microbial Communities in Sediment and Water of East Dongting Lake. 东洞庭湖沉积物和水体中丰富和稀有微生物群落的不同适应策略
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-10-01 Epub Date: 2024-10-22 DOI: 10.1007/s12275-024-00171-8
Yabing Gu, Junsheng Li, Zhenghua Liu, Min Zhang, Zhaoyue Yang, Huaqun Yin, Liyuan Chai, Delong Meng, Nengwen Xiao
{"title":"Different Adaption Strategies of Abundant and Rare Microbial Communities in Sediment and Water of East Dongting Lake.","authors":"Yabing Gu, Junsheng Li, Zhenghua Liu, Min Zhang, Zhaoyue Yang, Huaqun Yin, Liyuan Chai, Delong Meng, Nengwen Xiao","doi":"10.1007/s12275-024-00171-8","DOIUrl":"10.1007/s12275-024-00171-8","url":null,"abstract":"<p><p>The dynamics of aquatic microbes is of great importance for comprehending the acclimatisation and evolution of microorganisms in lake ecology. However, little is known about the adaption strategies of microbial communities in East Dongting Lake, which had special and complexity geographical characteristics. A semi-enclosed lake area (A) and a waterway connected to Yangtze River (B) both existed in the lake zone. Here, we investigated bacterial and fungal community diversity, community network and community assembly processes in sediment and water. The results indicated that the proportion of OTU numbers and their relative abundance for rare and abundant taxa were different obviously between sediment and water, but not between bacteria and fungi. However, abundant subcommunities dominated the shifts of bacterial community diversity and structure in A region, while rare subcommunities for fungal community diversity. Compared to fungal community, bacterial network was more compact and more key stones were identified as rare taxa. In addition, stochastic processes (dispersal limitation) drove the community assembly of abundant and rare subcommunities, but the effects of deterministic processes (including variable and heterogeneous selections) affected more on rare rather than abundant taxa. Partial Mantel test further indicated that the effect of environmental factors was a stronger force in shaping abundant bacterial subcommunities (TOC, NH<sub>4</sub><sup>+</sup>-N, TN, and ORP) and rare fungal subcommunities (ORP). Environmental factors explained more of the variation in bacterial community structure than that in fungal community structure, although they had additional effects on fungal community diversity and community assembly. Moreover, bacterial community affected the fungal community as a biotic factor in water. This research provided new insights into better understanding of microbial communities in the complex environment of the East Dongting Lake.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"829-843"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement 尼帕病毒病的最新进展:从病理生物学到治疗和疫苗进展
IF 3 4区 生物学
Journal of Microbiology Pub Date : 2024-09-18 DOI: 10.1007/s12275-024-00168-3
Sagnik Saha, Manojit Bhattacharya, Sang-Soo Lee, Chiranjib Chakraborty
{"title":"Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement","authors":"Sagnik Saha, Manojit Bhattacharya, Sang-Soo Lee, Chiranjib Chakraborty","doi":"10.1007/s12275-024-00168-3","DOIUrl":"https://doi.org/10.1007/s12275-024-00168-3","url":null,"abstract":"<p>The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"102 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae. IRC19 基因缺失导致酿酒酵母 DNA 双链断裂修复途径缺陷
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1007/s12275-024-00152-x
Ju-Hee Choi, Oyungoo Bayarmagnai, Sung-Ho Bae
{"title":"Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae.","authors":"Ju-Hee Choi, Oyungoo Bayarmagnai, Sung-Ho Bae","doi":"10.1007/s12275-024-00152-x","DOIUrl":"10.1007/s12275-024-00152-x","url":null,"abstract":"<p><p>DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"749-758"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pannonibacter tanglangensis sp. nov., a New Species Isolated from Pond Sediment. Pannonibacter tanglangensis sp.
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-09-01 Epub Date: 2024-07-05 DOI: 10.1007/s12275-024-00151-y
Lei Wang, Yanpeng Cheng, Panpan Yang, Jinjin Zhang, Gui Zhang, Sihui Zhang, Jing Yang, Zhen Zhang, Lulu Hu, Ji Pu, Yanying Yang, Xin-He Lai, Jianguo Xu, Yinghui Li, Qinghua Hu
{"title":"Pannonibacter tanglangensis sp. nov., a New Species Isolated from Pond Sediment.","authors":"Lei Wang, Yanpeng Cheng, Panpan Yang, Jinjin Zhang, Gui Zhang, Sihui Zhang, Jing Yang, Zhen Zhang, Lulu Hu, Ji Pu, Yanying Yang, Xin-He Lai, Jianguo Xu, Yinghui Li, Qinghua Hu","doi":"10.1007/s12275-024-00151-y","DOIUrl":"10.1007/s12275-024-00151-y","url":null,"abstract":"<p><p>Two bacterial strains (XCT-34<sup>T</sup> and XCT-53) isolated from sediment samples of an artificial freshwater reservoir were analyzed using a polyphasic approach. The two isolates are aerobic, Gram-stain-negative, oxidase-negative, catalase-positive, motile with polar flagella, rod-shaped, and approximately 1.4-3.4 × 0.4-0.9 μm in size. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences showed that the two strains formed a distinct branch within the evolutionary radiation of the genus Pannonibacter, closest to Pannonibacter carbonis Q4.6<sup>T</sup> (KCTC 52466). Furthermore, lower than threshold average nucleotide identity values (ANI, 85.7-86.4%) and digital DNA-DNA hybridization values (dDDH, 22.3-30.5%) of the two strains compared to the nearest type strains also confirmed that they represented a novel species. Genomic analyses, including annotation of the KEGG pathways, prediction of the secondary metabolism biosynthetic gene clusters and PHI phenotypes, supported functional inference and differentiation of the strains from the closely related taxa. Results of chemotaxonomic and physiological studies revealed that their distinct phenotypic characteristics distinguished them from existing Pannonibacter species. Thus, the two strains are considered to represent a novel species of Pannonibacter, for which the name of Pannonibacter tanglangensis sp. nov. is proposed, with XCT-34<sup>T</sup> (= KCTC 82332<sup>T</sup> = GDMCC 1.1947<sup>T</sup>) as the respective type strain.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"727-737"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. 微生物组-粘膜免疫关系:呼吸系统疾病进展的驱动力。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-09-01 Epub Date: 2024-09-06 DOI: 10.1007/s12275-024-00167-4
Young Chae Park, Soo Yeon Choi, Yunah Cha, Hyeong Won Yoon, Young Min Son
{"title":"Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression.","authors":"Young Chae Park, Soo Yeon Choi, Yunah Cha, Hyeong Won Yoon, Young Min Son","doi":"10.1007/s12275-024-00167-4","DOIUrl":"10.1007/s12275-024-00167-4","url":null,"abstract":"<p><p>The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"709-725"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信