Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI:10.1007/s12275-024-00152-x
Ju-Hee Choi, Oyungoo Bayarmagnai, Sung-Ho Bae
{"title":"Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae.","authors":"Ju-Hee Choi, Oyungoo Bayarmagnai, Sung-Ho Bae","doi":"10.1007/s12275-024-00152-x","DOIUrl":null,"url":null,"abstract":"<p><p>DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-024-00152-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.

Abstract Image

IRC19 基因缺失导致酿酒酵母 DNA 双链断裂修复途径缺陷
DNA 双链断裂(DSB)修复是维持基因组稳定性的基本细胞过程,同源重组和非同源末端连接是主要机制,单链退火(SSA)和微同源介导的末端连接等各种替代途径在特定条件下也发挥着重要作用。IRC 基因先前被确定为与酿酒酵母中 Rad52 病灶水平增加相关的一组基因的一部分。在本研究中,我们研究了 IRC 基因突变对 DSB 修复的影响,重点研究了未表征的 IRC10、19、21、22、23 和 24。基因转换(GC)测定显示,irc10Δ、22Δ、23Δ和24Δ突变体的GC频率略有增加,而irc19Δ和irc21Δ突变体的GC频率则显著降低。进一步研究发现,在 HO 诱导的 DSB 之后,irc19Δ 突变体细胞中不会产生 URA3 的缺失突变。此外,irc19Δ明显降低了SSA的频率,并且观察到irc19Δ和rad52Δ在通过SSA修复DSB时的协同作用。确定 DSB 修复途径选择的试验表明,Irc19 是产生 GC 和缺失产物的必要条件。总之,这些结果表明了Irc19在DSB修复途径中的潜在作用,尤其是在末端切除过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信