{"title":"A Comprehensive Theoretical Study of Drug Delivery at Nanoscale","authors":"Rq Sofi, S. Majeed, A. Sofi","doi":"10.15406/JNMR.2017.05.00106","DOIUrl":"https://doi.org/10.15406/JNMR.2017.05.00106","url":null,"abstract":"Nanotechnology, an interdisciplinary science that incorporates physics, chemistry, biology, etc. involves creation and utilization of materials, devices or systems on the nanometer scale and is currently undergoing unexpected development on many fronts. It finds numerous applications in material strengthening and fabrication, healthcare, agriculture, processing and storage of foods, robotics for human welfare, energy conservation and utilization, transport, manufacturing of safe and quality products and security at global level [1-11]. Besides, these unparalleled applications it has incredible potential for revolutionizing all fields of technology and is expected to create innovations and play a vital role in various biomedical applications like, drug delivery systems, molecular imaging, biomarkers, therapeutics, diagnostics, cancer therapy, biosensors, etc. Synthesis via benign route and building of orderly drug delivery systems are very important for medical and health-care. In this field, nano-based drug delivery system specifically nanoparticles have developed a great modification that provides new opportunities to move over hindrances and flaws of conventional drug delivery methods like enhance solubility of drugs, diminish drug toxicity, beshields drugs from deterioration, ineffective and benign delivery of drugs to specific target sites in the body, etc. [12-15].","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88031263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akanksha Mehto, V. R. Mehto, Jyotsana Chauhan, I. B. Singh, P. Rk, Ey
{"title":"Preparation and Characterization of Polyaniline/ZnO Composite Sensor","authors":"Akanksha Mehto, V. R. Mehto, Jyotsana Chauhan, I. B. Singh, P. Rk, Ey","doi":"10.15406/JNMR.2017.05.00104","DOIUrl":"https://doi.org/10.15406/JNMR.2017.05.00104","url":null,"abstract":"Polyaniline/ZnO nanocomposite thin films were prepared via an electrochemical synthesis route on ITO coated glass substrates. ZnO nanoparticles were uniformly dispersed in to the polyaniline matrix. Interaction between ZnO nanoparticle and polyaniline has been studied using X-ray diffraction (XRD), UV-Vis absorption spectroscopy, PL spectroscopy, AFM and I-V characteristics. The ammonia gas sensing behaviors of the polyaniline/ZnO composites were examined at room temperature. It was observed that the composite films showed good sensitivity, improved doping state and enhanced photoluminescence behaviour.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"142 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72627988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Synthesis of Vanadium Oxide (V2O5) Nanoparticles Prepared by Sodium Metavanadate","authors":"Majid Farahm, Jou, N. Abaeiyan","doi":"10.15406/JNMR.2017.05.00103","DOIUrl":"https://doi.org/10.15406/JNMR.2017.05.00103","url":null,"abstract":"Nano-materials have unique physical properties that have attracted more and more attention as a cathode in rechargeable ion batteries and selective gas sensors such as ammonia because of their high surface area and redox activity [1-3]. Biological activity of vanadium pentoxide nanomaterial depends on factors such as the type of the derivative, manner of its administration, dose, length of treatment, and also individualand species-specific sensitivity to the administered compound [4]. V2O5 nanomaterial is amphoteric in nature. Vanadium is correlated to its degree of oxidation (vanadylvanadate ion) and chemical form (organic inorganic ligand) [5-7]. The existence of the various vanadate species depends on the pH and on the total concentration of vanadium. Their occurrence can be accounted for condensation equilibrium; it is evident that only in very dilute solutions are monomeric vanadium ions found, and increases in concentration, particularly if the solution is acidic, lead to polymerization [8-10]. Vanadium oxygen systems (V2O5, VO2) are prototype stronglycorrelated materials that have been widely-studied by theoretical and experimental condensed-matter and materials community for more than half a century [11]. Vanadium oxide is a well-known catalyst among various metal oxides, and so many fundamental studies have been developed wide-spreadingly centering on catalytic oxidation [12]. They show metal-semiconductor transition, which implies an abrupt change in optical and electrical properties [13]. That is why this oxide is used in thermal sensing and switching. Vanadium pentoxide based materials are known to display several types of chromogenic effects, as a window for solar cells and for transmittance modulation in smart windows with potential applications in architecture, automotives and nanomedicine [14]. It shows an atypical behaviour because it cannot be defined exactly either as a cathodically or as anodically colouring material. V2O5 exhibit multi-colored electrochromism allowing the use in electrochromic (EC) displays color filters and other optical devices [15].","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90876613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heavy Metals Removal from Industrial Wastewater by Nano Adsorbent Prepared from Cucumis Melopeel Activated Carbon","authors":"M. Manjuladevi, M. Oviyaasri","doi":"10.15406/JNMR.2017.05.00102","DOIUrl":"https://doi.org/10.15406/JNMR.2017.05.00102","url":null,"abstract":"Activated carbon produced from Cucumis Melopeel (CM) was used as adsorbent to remove Cr6+, Cd2+, Ni2+ and Pb2+ ions from Battery industry and electroplating industrial wastewater. Batch adsorption experiment was conducted to examine the effects of adsorbent dosage, contact time, pH and metal ion concentration on adsorption of Cr6+, Cd2+, Ni2+ and Pb2+ ions from the wastewater. The obtained results showed that, the adsorption of the metal ions was adsorbent dosage, contact time, pH and metal ion concentration dependent. The optimum adsorbent dosage, metal ion concentration and pH, were found to be at 250 mg, 100 mg/L and pH 3 to 6 respectively. The study also showed that activated carbon prepared from Cucumis Melopeel can be efficiently used as low cost alternative for removal of metal ions.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79641470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellular Functions Analyses Based on Nanorobotics","authors":"Shayan Shahsavari","doi":"10.15406/JNMR.2017.05.00101","DOIUrl":"https://doi.org/10.15406/JNMR.2017.05.00101","url":null,"abstract":"Recently, Miyako group reported a new type of nano transporters that made of a liposome that decorated by a composition of carbon nanohorns (CNHs) and magnetic nanoparticles (MNPs) (Figure 1). This structure permeated into cells by a Neodymium magnet. Nano transporters not only could be moved by the magnetic field but also can be stimulated by NIR laser to control the release of liposome contains at a target place in organisms. This hybrid system has provided opportunities for analyses of biomolecular processes in organisms. As an achievement, enzymatic reaction controlled in the cancerous cells in vitro and transgene mice model in vivo [6]. β-galactosidase (β-Gal) is an enzyme that often over expressed in primary colorectal, breast, andovarian cancers [7]. The existence of this substance could be monitored by an enzymatic reaction in living cells. So, non-fluorescent fluorescein di-β-D-galactopyranoside (FDG) was loaded inside liposome part of the system.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"86 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77632231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can Nanotechnology help Push the Limit for Early Cancer Diagnostics","authors":"M. Agrawal, Abhijit Biswas","doi":"10.15406/jnmr.2017.05.00100","DOIUrl":"https://doi.org/10.15406/jnmr.2017.05.00100","url":null,"abstract":"J Nanomed Res 2017, 5(1): 00100 connected with it). Therefore, applications of these techniques are limited due to the lack of sufficient sensitivity to detect small numbers of malignant cells in the primary or even metastatic sites [1]. It is also difficult to detect specific cancer cell-surface markers, which are not only a target for cancer therapy but can also assist in the diagnosis and staging of cancer. Other challenges include inadequate drug concentrations reaching the tumor and the limited ability to monitor therapeutic responses thus leading to significant complications such as multidrug resistance due to poor drug delivery [1].","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87969299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Luminescent Probe Based Techniques for Hypoxia Imaging.","authors":"Sana Sandhu, LeNaiya Kydd, Justyn Jaworski","doi":"10.15406/jnmr.2017.06.00160","DOIUrl":"10.15406/jnmr.2017.06.00160","url":null,"abstract":"<p><p>Hypoxia is a condition of tissue environments wherein a lower than normal level of oxygen is available, and it serves as the root cause and indicator of various diseases. Detection of hypoxia in tumors is imperative for furthering our understanding of the pathological effects and the development of proper treatments, as it is well established that hypoxic tumors are able to impede the cancer treatment process by being resistant to many therapies. It is important therefore to be able to detect hypoxia in tissues and tumors through <i>in vivo</i> imaging methods. A growing area for detection of hypoxia in vivo is the use of fluorescent/luminescent probes which has accelerated in recent years. The continued quest for improvements in selectivity and sensitivity has inspired researchers to pursue new strategies for fluorescence/luminescent probe design. This review will discuss various luminescent probes based on small molecules, dyes, macromolecules, and nanoparticles for sensitive and specific detection of oxygen levels directly or by indirect mechanisms such as the presence of enzymes or related factors that arise in a hypoxic environment. Following the particular mechanism of detection, each probe has specific structural and photophysical properties which permit its selectivity and sensitivity. These probes show promise in terms of low toxicity and high specificity among other merits discussed, and in providing new dimensions for hypoxia detection, these works contribute to future potential methods for clinical diagnosis of hypoxic tissues and tumors.</p>","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223636/pdf/nihms943213.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36665648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liposomal nanotechnology - A new frontier for sport and exercise nutrition?","authors":"M. Higgins, M. D. Boit","doi":"10.15406/jnmr.2016.04.00098","DOIUrl":"https://doi.org/10.15406/jnmr.2016.04.00098","url":null,"abstract":"There are many orally ingested nutrients which cannot be fully absorbed by the human body. For this reason scientists have been experimenting with different techniques to improve nutrient bioavailability. Among these techniques microencapsulation has been extensively used in industry in recent years, especially liposomal technology. Briefly, polar lipids are used to create spherical capsules, called liposomes, where solids, liquids or gaseous materials compounds can be entrapped. This technique is used to stabilize certain compounds in nutritional supplements and fortified foods, which would otherwise slowly degrade and lose their nutritional value, as well as improve their bioavailability. Although there has been limited research investigating nutrients that potentially might impact exercise performance (e.g. liposomal vitamin C and liposomal iron), there is currently no published evidence for the use of liposomal supplementation in this context. With the potential to augment nutrient bioavailability, further research should consider the application of liposomal formulations as a strategy to improve exercise performance.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90619624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Anharmonic Oscillator","authors":"A. Maireche","doi":"10.15406/JNMR.2016.4.00097","DOIUrl":"https://doi.org/10.15406/JNMR.2016.4.00097","url":null,"abstract":"One of the interesting problems of the relativistic quantum mechanics is to find exact solutions to the Klein-Gordon (to the treatment of a zero-spin particle) and Dirac (spin 1⁄2 particles and anti-particles) equations for certain potentials of the physical interest, in recent years, considerable efforts have been done to obtain the analytical solution of central and non-central physics problems for different areas of atoms, nuclei, and hadrons, numerous papers of the physicist have discussed in details all the necessary information for the quantum system and in particularly the bound states solutions [1-21]. Some of these potentials are known to play important roles in many fields, one of such potential is the anharmonic oscillator has been a subject of many studies, it is a central potential of nuclear shell model, etc [20,21]. The ordinary quantum structures obey the standard Weyl-Heisenberg algebra in both Schrödinger and Heisenberg (the operators are depended on time) pictures, respectively, as (Throughout this paper the natural unit 1 = = c are employed):","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"27 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2016-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74956231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}