Journal of Molecular Cell Biology最新文献

筛选
英文 中文
Probing centromere-kinetochore core complex CENP-L/M assembly using cenpemlin. 使用 cenpemlin 探测中心粒-着丝点核心复合体 CENP-L/M 的组装。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-05-02 DOI: 10.1093/jmcb/mjae035
Olanrewaju Ayodeji Durojaye, Fengrui Yang, Xinjiao Gao, Felix Aikhionbare, Liangyu Zhang, Xing Liu, Xuebiao Yao
{"title":"Probing centromere-kinetochore core complex CENP-L/M assembly using cenpemlin.","authors":"Olanrewaju Ayodeji Durojaye, Fengrui Yang, Xinjiao Gao, Felix Aikhionbare, Liangyu Zhang, Xing Liu, Xuebiao Yao","doi":"10.1093/jmcb/mjae035","DOIUrl":"10.1093/jmcb/mjae035","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 organization to prevent merotelic attachments. 极光B/AIR-2调节姐妹中心粒的分辨和CENP-A/HCP-3的组织,以防止分生附着。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-05-02 DOI: 10.1093/jmcb/mjae045
Yue Wang, Charmaine Yan Yu Wong, Karen Wing Yee Yuen
{"title":"Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 organization to prevent merotelic attachments.","authors":"Yue Wang, Charmaine Yan Yu Wong, Karen Wing Yee Yuen","doi":"10.1093/jmcb/mjae045","DOIUrl":"10.1093/jmcb/mjae045","url":null,"abstract":"<p><p>During cell division, the accurate capture of sister kinetochores that are built on the centromeres of chromosomes by microtubules emanating from opposite spindle poles governs faithful chromosome segregation. To ensure sister chromatids separate correctly, sister centromeres undergo resolution to achieve bipolar orientation prior to microtubule attachments. Failure of centromere resolution increases the frequency of merotelic attachments, with microtubules from opposite poles attaching to the same sister kinetochore, causing lagging chromosome, aneuploidy, and even cancer progression. The Aurora B-mediated tension-sensing machinery to correct erroneous kinetochore-microtubule attachments has been well studied. However, preventative mechanisms to avoid merotelic attachments that occur in the earlier mitotic stage are poorly understood. In this study, we found that inactivation of mitotic kinase Aurora B/AIR-2 increases merotelic attachments in Caenorhabditis elegans. On one hand, Aurora B/AIR-2-deficient cells exhibit a delay in the occurrence of centromere resolution and a disruption in targeting condensin II components to chromatin. On the other hand, loss of Aurora B/AIR-2 results in an increased localization of centromeric proteins CENP-A/HCP-3 and M18BP1/KNL-2 as well as the kinetochore protein MIS-12 on chromatin, which may generate ectopic kinetochores causing erroneous attachments. To conclude, this study elucidated that Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 deposition to actively prevent merotely and chromosome instability in cells.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silencing GGH induces autophagy by increasing folate stress and production of NADH. 沉默GGH通过增加叶酸应激和NADH的产生诱导自噬。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-04-23 DOI: 10.1093/jmcb/mjaf014
Yu Li, Yuhui Du, Sijie Chen, Zhangrong Xie, Xinrui Li, Baoyue Lin, Zhiqing Zhou, Huijie Zhao, Guoan Chen
{"title":"Silencing GGH induces autophagy by increasing folate stress and production of NADH.","authors":"Yu Li, Yuhui Du, Sijie Chen, Zhangrong Xie, Xinrui Li, Baoyue Lin, Zhiqing Zhou, Huijie Zhao, Guoan Chen","doi":"10.1093/jmcb/mjaf014","DOIUrl":"https://doi.org/10.1093/jmcb/mjaf014","url":null,"abstract":"<p><p>There is an inextricable link between metabolic disorders and autophagy. Gamma-glutamyl hydrolase (GGH) is a lysosomal glycoprotein that reduces intracellular folate stress by catalyzing the hydrolysis of polyglutamylated folate into transportable monoglutamate. The relationship between folate metabolism, involving the folate metabolic enzyme GGH, and autophagy has rarely been reported. In this study, we found that GGH functions as a crucial oncogene in lung adenocarcinomas. Importantly, we found that cell autophagy and autophagic cell death are induced by GGH silencing through the elevated folate stress resulting from folate metabolism and the folate metabolite nicotinamide adenine dinucleotide (NADH). By increasing the NADH/NAD + ratio, silencing GGH activates AMPK through the activation of LKB1 and CAMKK2, as well as enhanced AMP/ATP and ADP/ATP ratios, which then triggers the initiation of early autophagy, finally resulting in autophagic cell death. Taken together, our study suggests that GGH may not only serve as a prognostic marker but also play a critical role in the initiation of early autophagy. Interventions targeting GGH to regulate folate metabolism and the proportion of NADH/NAD + may have translational potential for precision therapy in human cancer.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144014701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the ends: Potential implications of Telomeric Repeat-Containing RNA (TERRA) for CNS Diseases. 超越终点:端粒重复序列RNA (TERRA)对中枢神经系统疾病的潜在影响。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-04-16 DOI: 10.1093/jmcb/mjaf013
Hadjer Namous, Raghu Vemuganti
{"title":"Beyond the ends: Potential implications of Telomeric Repeat-Containing RNA (TERRA) for CNS Diseases.","authors":"Hadjer Namous, Raghu Vemuganti","doi":"10.1093/jmcb/mjaf013","DOIUrl":"https://doi.org/10.1093/jmcb/mjaf013","url":null,"abstract":"<p><p>Telomeric Repeat-Containing RNA (TERRA) is a class of noncoding RNAs (ncRNAs) emanating from telomeres and control telomere dynamics. Recent studies showed that TERRAs influence chromatin structure and gene expression. TERRAs can also play a crucial role in controlling inflammation, oxidative stress, DNA damage, and cellular senescence. This review article discussed the significance of TERRAs in modulating these processes, particularly in CNS. While our understanding of TERRAs largely stems from cancer research, their involvement in these physiologic and pathologic pathways highlights their potential as therapeutic targets for CNS disorders as well.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144024662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells. 修正:碎屑3b在哺乳动物细胞中以依赖于ezrin的方式促进紧密连接。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-04-07 DOI: 10.1093/jmcb/mjaf012
{"title":"Correction to: Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells.","authors":"","doi":"10.1093/jmcb/mjaf012","DOIUrl":"https://doi.org/10.1093/jmcb/mjaf012","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase separation of hnRNPA1 and TERRA regulates telomeric stability. hnRNPA1 和 TERRA 的相分离调节端粒的稳定性。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-03-21 DOI: 10.1093/jmcb/mjae037
Ziyan Xu, Yongrui Liu, Fudong Li, Yi Yang, Hong Zhang, Feilong Meng, Xing Liu, Xin Xie, Xianjun Chen, Yunyu Shi, Liang Zhang
{"title":"Phase separation of hnRNPA1 and TERRA regulates telomeric stability.","authors":"Ziyan Xu, Yongrui Liu, Fudong Li, Yi Yang, Hong Zhang, Feilong Meng, Xing Liu, Xin Xie, Xianjun Chen, Yunyu Shi, Liang Zhang","doi":"10.1093/jmcb/mjae037","DOIUrl":"10.1093/jmcb/mjae037","url":null,"abstract":"<p><p>Telomeres are the complexes composed of repetitive DNA sequences and associated proteins located at the end of chromatin. As a result of the DNA replication ending issue, telomeric DNA shortens during each cell cycle. The shelterin protein complex caps telomeric ends and forms a high-order protein-DNA structure to protect telomeric DNA. The stability of telomeres is critical for cellular function and related to the progression of many human diseases. Telomeric repeat-containing RNA (TERRA) is a noncoding RNA transcribed from telomeric DNA regions. TERRA plays an essential role in regulating and maintaining the stability of telomeres. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes. hnRNPA1 can recognize both TERRA and telomeric DNA. Previous research reported that hnRNPA1, TERRA, and POT1, a component of the shelterin complex, work coordinately and displace replication protein A from telomeric single-stranded DNA after DNA replication, promoting telomere capping to preserve genomic integrity. However, the detailed molecular mechanism has remained unclear for >20 years. Here, our study revealed the molecular structure through which the hnRNPA1 UP1 domain interacts with TERRA and identified critical residues on the interacting surface between UP1 and TERRA. Furthermore, we proved that nucleic acids significantly increase the phase-separating ability of hnRNPA1, while disrupting the UP1-TERRA interaction extraordinarily affects hnRNPA1 droplet formation both in vitro and in vivo. Taken together, these data reveal the molecular mechanism of the phase separation of hnRNPA1 and TERRA and the potential contribution of the droplets to maintaining genomic stability.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HIV-1 inhibits IFITM3 expression to promote the infection of megakaryocytes. HIV-1 可抑制 IFITM3 的表达,从而促进巨核细胞的感染。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-03-21 DOI: 10.1093/jmcb/mjae042
Cyrine Bentaleb, Souad Adrouche, Jade Finkelstein, Christelle Devisme, Nathalie Callens, Claude Capron, Morgane Bomsel, Fernando Real
{"title":"HIV-1 inhibits IFITM3 expression to promote the infection of megakaryocytes.","authors":"Cyrine Bentaleb, Souad Adrouche, Jade Finkelstein, Christelle Devisme, Nathalie Callens, Claude Capron, Morgane Bomsel, Fernando Real","doi":"10.1093/jmcb/mjae042","DOIUrl":"10.1093/jmcb/mjae042","url":null,"abstract":"<p><p>Despite an undetectable plasma viral load as a result of antiretroviral therapy, HIV-1-infected individuals with poor immune reconstitution harbor infectious HIV-1 within their platelets. Megakaryocytes, as platelet precursors, are the likely cellular origin of these HIV-1-containing platelets. To investigate the mechanisms that allow megakaryocytes to support HIV-1 infection, we established in vitro models of viral infection using hematopoietic stem cell-derived megakaryocytes and the megakaryocytic MEG-01 cell line. We observed HIV-1 DNA provirus integration into the megakaryocyte cell genome, self-limiting virus production, and HIV-1 protein and RNA compartmentalization, which are hallmarks of HIV-1 infection in myeloid cells. In addition, following HIV-1 infection of megakaryocyte precursors, the expression of interferon-induced transmembrane protein 3 (IFITM3), an antiviral factor constitutively expressed in megakaryocytes, was inhibited in terminally differentiated HIV-1-infected megakaryocytes. IFITM3 knockdown in MEG-01 cells prior to infection led to enhanced HIV-1 infection, indicating that IFITM3 acts as an HIV-1 restriction factor in megakaryocytes. Together, these findings indicate that megakaryocyte precursors are susceptible to HIV-1 infection, leading to terminally differentiated megakaryocytes harboring virus in a process regulated by IFITM3. Megakaryocytes may thus constitute a neglected HIV-1 reservoir that warrants further study in order to develop improved antiretroviral therapies and to facilitate HIV-1 eradication.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes. 超分辨率显微镜揭示了人类红细胞中 CD47 的纳米级组织和自限性聚类。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-03-21 DOI: 10.1093/jmcb/mjae041
Jianyu Yang, Fulin Xing, Fen Hu, Mengdi Hou, Hao Dong, Jiayu Cheng, Wan Li, Rui Yan, Jingjun Xu, Ke Xu, Leiting Pan
{"title":"Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes.","authors":"Jianyu Yang, Fulin Xing, Fen Hu, Mengdi Hou, Hao Dong, Jiayu Cheng, Wan Li, Rui Yan, Jingjun Xu, Ke Xu, Leiting Pan","doi":"10.1093/jmcb/mjae041","DOIUrl":"10.1093/jmcb/mjae041","url":null,"abstract":"<p><p>The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using secondary antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and secondary antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual role of PpV in Drosophila crystal cell proliferation and survival. PpV 在果蝇晶体细胞增殖和存活中的双重作用
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-03-21 DOI: 10.1093/jmcb/mjae028
Wang Luo, Fang Zhang, Fangzhen Zhao, Yang Fang, Long Zhao, Ying Su
{"title":"Dual role of PpV in Drosophila crystal cell proliferation and survival.","authors":"Wang Luo, Fang Zhang, Fangzhen Zhao, Yang Fang, Long Zhao, Ying Su","doi":"10.1093/jmcb/mjae028","DOIUrl":"10.1093/jmcb/mjae028","url":null,"abstract":"<p><p>Drosophila melanogaster crystal cells are a specialized type of blood cells for the innate immune process upon injury. Under normal conditions, crystal cells rarely proliferate and constitute a small proportion of fly blood cells. Notch signaling has been known to guide the cell fate determination of crystal cells and maintain their survival. Here, we reported that protein phosphatase V (PpV), the unique catalytic subunit of protein phosphatase 6 in Drosophila, is a novel regulator of crystal cell proliferation and integrity. We found that PpV proteins highly accumulated in crystal cells in the larval hematopoietic organ termed the lymph gland. Silencing PpV using RNA interference led to increased crystal cell proliferation in a Notch-independent manner and induced crystal cell rupture dependent on Notch signaling. Moreover, additive PpV prevented the rupture of crystal cells in lymph glands upon a needle injury, suggesting the involvement of PpV in wound healing. Altogether, our results indicated that PpV plays a dual role in lymph glands, preventing crystal cell proliferation to limit the cell number, as well as inhibiting crystal cell rupture to maintain their survival.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on 'Obstructive sleep apnea syndrome exacerbates NASH progression via selective autophagy-mediated Eepd1 degradation'. 关于 "阻塞性睡眠呼吸暂停综合征通过选择性自噬介导的 Eepd1 降解加剧 NASH 进展 "的评论
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2025-03-21 DOI: 10.1093/jmcb/mjae043
Jie Xiong, Suzhen Chen, Junli Liu
{"title":"Comments on 'Obstructive sleep apnea syndrome exacerbates NASH progression via selective autophagy-mediated Eepd1 degradation'.","authors":"Jie Xiong, Suzhen Chen, Junli Liu","doi":"10.1093/jmcb/mjae043","DOIUrl":"10.1093/jmcb/mjae043","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信