{"title":"Aurora B通过同时稳定肌凝蛋白II和波形蛋白维持有丝分裂细胞的球形。","authors":"Chenxi Hou, Fazhi Yu, Cheng Cao, Tianchen Wang, Zihang Pan, Minru Zhong, Xing Liu, Xuebiao Yao, Kaiguang Zhang, Zhenye Yang, Jing Guo","doi":"10.1093/jmcb/mjaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Cells round up when they enter mitosis and maintain this rounded morphology until they pass the spindle assembly checkpoint during anaphase. However, the mechanisms that regulate and maintain this transient spherical state remain unclear. In this study, we demonstrate that both astral microtubules and Aurora B kinase are required to maintain cortex stability during prometaphase. Simultaneous inhibition of astral microtubules and Aurora B leads to severe and continuous deformation of mitotic cells, resulting in micronuclei containing chromosomes after the cells exit mitosis. Mechanistically, active Aurora B kinase reduces the activity of myosin light chain kinase through phosphorylation, which in turn decreases the motor activity of myosin II. Additionally, Aurora B kinase regulates the distribution of actin at the cortex by phosphorylating the intermediate filament protein vimentin. Blocking these phosphorylation events disrupts the para-cortex localization of vimentin around the cortex and leads to the dislocalization of actin at the cortex. These regulatory effects occur in highly mobile cells expressing vimentin. In summary, we show that during mitosis, Aurora B kinase coordinates the interactions between microtubules, actin, and intermediate filaments to stabilize the cortex of rounded mitotic cells, ensuring the successful completion of mitosis.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aurora B maintains spherical shape of mitotic cells via simultaneously stabilizing myosin II and vimentin.\",\"authors\":\"Chenxi Hou, Fazhi Yu, Cheng Cao, Tianchen Wang, Zihang Pan, Minru Zhong, Xing Liu, Xuebiao Yao, Kaiguang Zhang, Zhenye Yang, Jing Guo\",\"doi\":\"10.1093/jmcb/mjaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells round up when they enter mitosis and maintain this rounded morphology until they pass the spindle assembly checkpoint during anaphase. However, the mechanisms that regulate and maintain this transient spherical state remain unclear. In this study, we demonstrate that both astral microtubules and Aurora B kinase are required to maintain cortex stability during prometaphase. Simultaneous inhibition of astral microtubules and Aurora B leads to severe and continuous deformation of mitotic cells, resulting in micronuclei containing chromosomes after the cells exit mitosis. Mechanistically, active Aurora B kinase reduces the activity of myosin light chain kinase through phosphorylation, which in turn decreases the motor activity of myosin II. Additionally, Aurora B kinase regulates the distribution of actin at the cortex by phosphorylating the intermediate filament protein vimentin. Blocking these phosphorylation events disrupts the para-cortex localization of vimentin around the cortex and leads to the dislocalization of actin at the cortex. These regulatory effects occur in highly mobile cells expressing vimentin. In summary, we show that during mitosis, Aurora B kinase coordinates the interactions between microtubules, actin, and intermediate filaments to stabilize the cortex of rounded mitotic cells, ensuring the successful completion of mitosis.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf023\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Aurora B maintains spherical shape of mitotic cells via simultaneously stabilizing myosin II and vimentin.
Cells round up when they enter mitosis and maintain this rounded morphology until they pass the spindle assembly checkpoint during anaphase. However, the mechanisms that regulate and maintain this transient spherical state remain unclear. In this study, we demonstrate that both astral microtubules and Aurora B kinase are required to maintain cortex stability during prometaphase. Simultaneous inhibition of astral microtubules and Aurora B leads to severe and continuous deformation of mitotic cells, resulting in micronuclei containing chromosomes after the cells exit mitosis. Mechanistically, active Aurora B kinase reduces the activity of myosin light chain kinase through phosphorylation, which in turn decreases the motor activity of myosin II. Additionally, Aurora B kinase regulates the distribution of actin at the cortex by phosphorylating the intermediate filament protein vimentin. Blocking these phosphorylation events disrupts the para-cortex localization of vimentin around the cortex and leads to the dislocalization of actin at the cortex. These regulatory effects occur in highly mobile cells expressing vimentin. In summary, we show that during mitosis, Aurora B kinase coordinates the interactions between microtubules, actin, and intermediate filaments to stabilize the cortex of rounded mitotic cells, ensuring the successful completion of mitosis.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.