TGF-β-非依赖性SMAD4-NFATc1-STAT3调控轴的鉴定与表征

IF 5.9 2区 生物学 Q2 CELL BIOLOGY
Wukun Ouyang, Jiaying Hao, Qiankun Niu, Eugene Douglass, Christian M Beusch, David E Gordon, Maggie Hall, Richard Moffit, Yuhong Du, Xiulei Mo
{"title":"TGF-β-非依赖性SMAD4-NFATc1-STAT3调控轴的鉴定与表征","authors":"Wukun Ouyang, Jiaying Hao, Qiankun Niu, Eugene Douglass, Christian M Beusch, David E Gordon, Maggie Hall, Richard Moffit, Yuhong Du, Xiulei Mo","doi":"10.1093/jmcb/mjaf028","DOIUrl":null,"url":null,"abstract":"<p><p>SMAD4, a central mediator of the TGF-β signaling pathway, plays a critical role in regulating cellular processes such as proliferation, differentiation, and apoptosis. While SMAD4's canonical functions within TGF-β signaling are well-established, its non-canonical, TGF-β-independent roles remain poorly understood, particularly in the context of disease biology. Here, we investigate SMAD4's TGF-β-independent functions by identifying and characterizing its protein-protein interaction network. Using pancreatic ductal adenocarcinoma as a model system, we performed a SMAD4-focused oncogenic protein-protein interaction mapping and uncovered a novel interaction between SMAD4 and NFATc1. We demonstrated that SMAD4 binds to NFATc1 in a phosphorylation-dependent but TGF-β-independent manner, sequestering NFATc1 in the cytoplasm and inhibiting its transcriptional activity. The absence of this interaction in SMAD4-deficient PDAC cells is associated with the activation of NFATc1 transcriptional programs and upregulation of STAT3 at both mRNA and protein levels. Pharmacological profiling revealed multiple STAT3 inhibitors with selective efficacy against SMAD4-deficient PDAC cells in vitro, highlighting a potential therapeutic vulnerability. These findings identify a previously uncharacterized SMAD4-NFATc1 regulatory complex and establish its biological significance in regulating NFATc1-driven transcriptional programs, such as STAT3, providing critical insights into SMAD4's TGF-β-independent functions and uncovering new opportunities for therapeutic intervention in SMAD4-deficient contexts.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Characterization of a TGF-β-Independent SMAD4-NFATc1-STAT3 Regulatory Axis.\",\"authors\":\"Wukun Ouyang, Jiaying Hao, Qiankun Niu, Eugene Douglass, Christian M Beusch, David E Gordon, Maggie Hall, Richard Moffit, Yuhong Du, Xiulei Mo\",\"doi\":\"10.1093/jmcb/mjaf028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SMAD4, a central mediator of the TGF-β signaling pathway, plays a critical role in regulating cellular processes such as proliferation, differentiation, and apoptosis. While SMAD4's canonical functions within TGF-β signaling are well-established, its non-canonical, TGF-β-independent roles remain poorly understood, particularly in the context of disease biology. Here, we investigate SMAD4's TGF-β-independent functions by identifying and characterizing its protein-protein interaction network. Using pancreatic ductal adenocarcinoma as a model system, we performed a SMAD4-focused oncogenic protein-protein interaction mapping and uncovered a novel interaction between SMAD4 and NFATc1. We demonstrated that SMAD4 binds to NFATc1 in a phosphorylation-dependent but TGF-β-independent manner, sequestering NFATc1 in the cytoplasm and inhibiting its transcriptional activity. The absence of this interaction in SMAD4-deficient PDAC cells is associated with the activation of NFATc1 transcriptional programs and upregulation of STAT3 at both mRNA and protein levels. Pharmacological profiling revealed multiple STAT3 inhibitors with selective efficacy against SMAD4-deficient PDAC cells in vitro, highlighting a potential therapeutic vulnerability. These findings identify a previously uncharacterized SMAD4-NFATc1 regulatory complex and establish its biological significance in regulating NFATc1-driven transcriptional programs, such as STAT3, providing critical insights into SMAD4's TGF-β-independent functions and uncovering new opportunities for therapeutic intervention in SMAD4-deficient contexts.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf028\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SMAD4是TGF-β信号通路的中心介质,在调节细胞增殖、分化和凋亡等过程中起关键作用。虽然SMAD4在TGF-β信号传导中的典型功能已经确立,但其非典型的TGF-β独立作用仍然知之甚少,特别是在疾病生物学的背景下。本研究通过鉴定和表征SMAD4蛋白-蛋白相互作用网络,研究SMAD4与TGF-β无关的功能。以胰腺导管腺癌为模型系统,我们进行了以SMAD4为重点的致癌蛋白-蛋白相互作用作图,发现了SMAD4和NFATc1之间的一种新的相互作用。我们证明SMAD4以磷酸化依赖但不依赖TGF-β的方式与NFATc1结合,将NFATc1隔离在细胞质中并抑制其转录活性。在缺乏smad4的PDAC细胞中,这种相互作用的缺失与NFATc1转录程序的激活和STAT3 mRNA和蛋白水平的上调有关。药理分析显示,多种STAT3抑制剂对体外缺乏smad4的PDAC细胞具有选择性疗效,突出了潜在的治疗脆弱性。这些发现确定了一个以前未被表征的SMAD4- nfatc1调节复合物,并确立了其在调节nfatc1驱动的转录程序(如STAT3)中的生物学意义,为SMAD4的TGF-β独立功能提供了重要见解,并为SMAD4缺乏的情况下的治疗干预提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and Characterization of a TGF-β-Independent SMAD4-NFATc1-STAT3 Regulatory Axis.

SMAD4, a central mediator of the TGF-β signaling pathway, plays a critical role in regulating cellular processes such as proliferation, differentiation, and apoptosis. While SMAD4's canonical functions within TGF-β signaling are well-established, its non-canonical, TGF-β-independent roles remain poorly understood, particularly in the context of disease biology. Here, we investigate SMAD4's TGF-β-independent functions by identifying and characterizing its protein-protein interaction network. Using pancreatic ductal adenocarcinoma as a model system, we performed a SMAD4-focused oncogenic protein-protein interaction mapping and uncovered a novel interaction between SMAD4 and NFATc1. We demonstrated that SMAD4 binds to NFATc1 in a phosphorylation-dependent but TGF-β-independent manner, sequestering NFATc1 in the cytoplasm and inhibiting its transcriptional activity. The absence of this interaction in SMAD4-deficient PDAC cells is associated with the activation of NFATc1 transcriptional programs and upregulation of STAT3 at both mRNA and protein levels. Pharmacological profiling revealed multiple STAT3 inhibitors with selective efficacy against SMAD4-deficient PDAC cells in vitro, highlighting a potential therapeutic vulnerability. These findings identify a previously uncharacterized SMAD4-NFATc1 regulatory complex and establish its biological significance in regulating NFATc1-driven transcriptional programs, such as STAT3, providing critical insights into SMAD4's TGF-β-independent functions and uncovering new opportunities for therapeutic intervention in SMAD4-deficient contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信