Wukun Ouyang, Jiaying Hao, Qiankun Niu, Eugene Douglass, Christian M Beusch, David E Gordon, Maggie Hall, Richard Moffit, Yuhong Du, Xiulei Mo
{"title":"TGF-β-非依赖性SMAD4-NFATc1-STAT3调控轴的鉴定与表征","authors":"Wukun Ouyang, Jiaying Hao, Qiankun Niu, Eugene Douglass, Christian M Beusch, David E Gordon, Maggie Hall, Richard Moffit, Yuhong Du, Xiulei Mo","doi":"10.1093/jmcb/mjaf028","DOIUrl":null,"url":null,"abstract":"<p><p>SMAD4, a central mediator of the TGF-β signaling pathway, plays a critical role in regulating cellular processes such as proliferation, differentiation, and apoptosis. While SMAD4's canonical functions within TGF-β signaling are well-established, its non-canonical, TGF-β-independent roles remain poorly understood, particularly in the context of disease biology. Here, we investigate SMAD4's TGF-β-independent functions by identifying and characterizing its protein-protein interaction network. Using pancreatic ductal adenocarcinoma as a model system, we performed a SMAD4-focused oncogenic protein-protein interaction mapping and uncovered a novel interaction between SMAD4 and NFATc1. We demonstrated that SMAD4 binds to NFATc1 in a phosphorylation-dependent but TGF-β-independent manner, sequestering NFATc1 in the cytoplasm and inhibiting its transcriptional activity. The absence of this interaction in SMAD4-deficient PDAC cells is associated with the activation of NFATc1 transcriptional programs and upregulation of STAT3 at both mRNA and protein levels. Pharmacological profiling revealed multiple STAT3 inhibitors with selective efficacy against SMAD4-deficient PDAC cells in vitro, highlighting a potential therapeutic vulnerability. These findings identify a previously uncharacterized SMAD4-NFATc1 regulatory complex and establish its biological significance in regulating NFATc1-driven transcriptional programs, such as STAT3, providing critical insights into SMAD4's TGF-β-independent functions and uncovering new opportunities for therapeutic intervention in SMAD4-deficient contexts.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Characterization of a TGF-β-Independent SMAD4-NFATc1-STAT3 Regulatory Axis.\",\"authors\":\"Wukun Ouyang, Jiaying Hao, Qiankun Niu, Eugene Douglass, Christian M Beusch, David E Gordon, Maggie Hall, Richard Moffit, Yuhong Du, Xiulei Mo\",\"doi\":\"10.1093/jmcb/mjaf028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SMAD4, a central mediator of the TGF-β signaling pathway, plays a critical role in regulating cellular processes such as proliferation, differentiation, and apoptosis. While SMAD4's canonical functions within TGF-β signaling are well-established, its non-canonical, TGF-β-independent roles remain poorly understood, particularly in the context of disease biology. Here, we investigate SMAD4's TGF-β-independent functions by identifying and characterizing its protein-protein interaction network. Using pancreatic ductal adenocarcinoma as a model system, we performed a SMAD4-focused oncogenic protein-protein interaction mapping and uncovered a novel interaction between SMAD4 and NFATc1. We demonstrated that SMAD4 binds to NFATc1 in a phosphorylation-dependent but TGF-β-independent manner, sequestering NFATc1 in the cytoplasm and inhibiting its transcriptional activity. The absence of this interaction in SMAD4-deficient PDAC cells is associated with the activation of NFATc1 transcriptional programs and upregulation of STAT3 at both mRNA and protein levels. Pharmacological profiling revealed multiple STAT3 inhibitors with selective efficacy against SMAD4-deficient PDAC cells in vitro, highlighting a potential therapeutic vulnerability. These findings identify a previously uncharacterized SMAD4-NFATc1 regulatory complex and establish its biological significance in regulating NFATc1-driven transcriptional programs, such as STAT3, providing critical insights into SMAD4's TGF-β-independent functions and uncovering new opportunities for therapeutic intervention in SMAD4-deficient contexts.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf028\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Identification and Characterization of a TGF-β-Independent SMAD4-NFATc1-STAT3 Regulatory Axis.
SMAD4, a central mediator of the TGF-β signaling pathway, plays a critical role in regulating cellular processes such as proliferation, differentiation, and apoptosis. While SMAD4's canonical functions within TGF-β signaling are well-established, its non-canonical, TGF-β-independent roles remain poorly understood, particularly in the context of disease biology. Here, we investigate SMAD4's TGF-β-independent functions by identifying and characterizing its protein-protein interaction network. Using pancreatic ductal adenocarcinoma as a model system, we performed a SMAD4-focused oncogenic protein-protein interaction mapping and uncovered a novel interaction between SMAD4 and NFATc1. We demonstrated that SMAD4 binds to NFATc1 in a phosphorylation-dependent but TGF-β-independent manner, sequestering NFATc1 in the cytoplasm and inhibiting its transcriptional activity. The absence of this interaction in SMAD4-deficient PDAC cells is associated with the activation of NFATc1 transcriptional programs and upregulation of STAT3 at both mRNA and protein levels. Pharmacological profiling revealed multiple STAT3 inhibitors with selective efficacy against SMAD4-deficient PDAC cells in vitro, highlighting a potential therapeutic vulnerability. These findings identify a previously uncharacterized SMAD4-NFATc1 regulatory complex and establish its biological significance in regulating NFATc1-driven transcriptional programs, such as STAT3, providing critical insights into SMAD4's TGF-β-independent functions and uncovering new opportunities for therapeutic intervention in SMAD4-deficient contexts.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.