Journal of Molecular Cell Biology最新文献

筛选
英文 中文
Targeting hepatic ceruloplasmin mitigates nonalcoholic steatohepatitis by modulating bile acid metabolism. 靶向肝铜蓝蛋白通过调节胆汁酸代谢减轻非酒精性脂肪性肝炎。
IF 5.5 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad060
Quanxin Jiang, Ning Wang, Sijia Lu, Jie Xiong, Yanmei Yuan, Junli Liu, Suzhen Chen
{"title":"Targeting hepatic ceruloplasmin mitigates nonalcoholic steatohepatitis by modulating bile acid metabolism.","authors":"Quanxin Jiang, Ning Wang, Sijia Lu, Jie Xiong, Yanmei Yuan, Junli Liu, Suzhen Chen","doi":"10.1093/jmcb/mjad060","DOIUrl":"10.1093/jmcb/mjad060","url":null,"abstract":"<p><p>Nonalcoholic steatohepatitis (NASH) is a condition that progresses from nonalcoholic fatty liver disease (NAFLD) and is characterized by hepatic fat accumulation, inflammation, and fibrosis. It has the potential to develop into cirrhosis and liver cancer, and currently no effective pharmacological treatment is available. In this study, we investigate the therapeutic potential of targeting ceruloplasmin (Cp), a copper-containing protein predominantly secreted by hepatocytes, for treating NASH. Our result show that hepatic Cp is remarkedly upregulated in individuals with NASH and the mouse NASH model. Hepatocyte-specific Cp ablation effectively attenuates the onset of dietary-induced NASH by decreasing lipid accumulation, curbing inflammation, mitigating fibrosis, and ameliorating liver damage. By employing transcriptomics and metabolomics approaches, we have discovered that hepatic deletion of Cp brings about remarkable restoration of bile acid (BA) metabolism during NASH. Hepatic deletion of Cp effectively remodels BA metabolism by upregulating Cyp7a1 and Cyp8b1, which subsequently leads to enhanced BA synthesis and notable alterations in BA profiles. In conclusion, our studies elucidate the crucial involvement of Cp in NASH, highlighting its significance as a promising therapeutic target for the treatment of this disease.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41141652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indomethacin restrains cytoplasmic nucleic acid-stimulated immune responses by inhibiting the nuclear translocation of IRF3 吲哚美辛通过抑制 IRF3 的核转位抑制细胞质核酸刺激的免疫反应
IF 5.5 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjae015
Miao Wang, Xiao-Wei Li, Sen-Chao Yuan, Jie Pan, Zeng-Lin Guo, Li-Ming Sun, Shao-Zhen Jiang, Ming Zhao, Wen Xue, Hong Cai, Lin Gu, Dan Luo, Ling Chen, Xue-Qing Zhou, Qiu-Ying Han, Jin Li, Tao Zhou, Tian Xia, Tao Li
{"title":"Indomethacin restrains cytoplasmic nucleic acid-stimulated immune responses by inhibiting the nuclear translocation of IRF3","authors":"Miao Wang, Xiao-Wei Li, Sen-Chao Yuan, Jie Pan, Zeng-Lin Guo, Li-Ming Sun, Shao-Zhen Jiang, Ming Zhao, Wen Xue, Hong Cai, Lin Gu, Dan Luo, Ling Chen, Xue-Qing Zhou, Qiu-Ying Han, Jin Li, Tao Zhou, Tian Xia, Tao Li","doi":"10.1093/jmcb/mjae015","DOIUrl":"https://doi.org/10.1093/jmcb/mjae015","url":null,"abstract":"The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor–IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi–Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":"30 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sgo1 interacts with CENP-A to guide accurate chromosome segregation in mitosis. Sgo1与CENP-A相互作用,指导有丝分裂中准确的染色体分离。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad061
Fengge Wu, Hameed Akbar, Chunyue Wang, Xiao Yuan, Zhen Dou, McKay Mullen, Liwen Niu, Liang Zhang, Jianye Zang, Zhikai Wang, Xuebiao Yao, Xiaoyu Song, Xing Liu
{"title":"Sgo1 interacts with CENP-A to guide accurate chromosome segregation in mitosis.","authors":"Fengge Wu, Hameed Akbar, Chunyue Wang, Xiao Yuan, Zhen Dou, McKay Mullen, Liwen Niu, Liang Zhang, Jianye Zang, Zhikai Wang, Xuebiao Yao, Xiaoyu Song, Xing Liu","doi":"10.1093/jmcb/mjad061","DOIUrl":"10.1093/jmcb/mjad061","url":null,"abstract":"<p><p>Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41141631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SV2B defines a subpopulation of synaptic vesicles. SV2B 定义了突触小泡的一个亚群。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad054
Isabelle Paulussen, Hannes Beckert, Timothy F Musial, Lena J Gschossmann, Julia Wolf, Mathieu Schmitt, Jérôme Clasadonte, Georges Mairet-Coello, Christian Wolff, Susanne Schoch, Dirk Dietrich
{"title":"SV2B defines a subpopulation of synaptic vesicles.","authors":"Isabelle Paulussen, Hannes Beckert, Timothy F Musial, Lena J Gschossmann, Julia Wolf, Mathieu Schmitt, Jérôme Clasadonte, Georges Mairet-Coello, Christian Wolff, Susanne Schoch, Dirk Dietrich","doi":"10.1093/jmcb/mjad054","DOIUrl":"10.1093/jmcb/mjad054","url":null,"abstract":"<p><p>Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10173950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy. 线粒体醛脱氢酶通过GSK3β介导的线粒体完整性保护和帕金介导的自噬拯救糖尿病心肌病。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad056
Yingmei Zhang, Rongjun Zou, Miyesaier Abudureyimu, Qiong Liu, Jipeng Ma, Haixia Xu, Wei Yu, Jian Yang, Jianguo Jia, Sanli Qian, Haichang Wang, Yang Yang, Xin Wang, Xiaoping Fan, Jun Ren
{"title":"Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy.","authors":"Yingmei Zhang, Rongjun Zou, Miyesaier Abudureyimu, Qiong Liu, Jipeng Ma, Haixia Xu, Wei Yu, Jian Yang, Jianguo Jia, Sanli Qian, Haichang Wang, Yang Yang, Xin Wang, Xiaoping Fan, Jun Ren","doi":"10.1093/jmcb/mjad056","DOIUrl":"10.1093/jmcb/mjad056","url":null,"abstract":"<p><p>Mitochondrial aldehyde dehydrogenase (ALDH2) offers proven cardiovascular benefit, although its impact on diabetes remains elusive. This study examined the effects of ALDH2 overexpression and knockout on diabetic cardiomyopathy and the mechanism involved with a focus on mitochondrial integrity. Mice challenged with streptozotocin (STZ, 200 mg/kg, via intraperitoneal injection) exhibited pathological alterations, including reduced respiratory exchange ratio, dampened fractional shortening and ejection fraction, increased left ventricular end-systolic and diastolic diameters, cardiac remodeling, cardiomyocyte contractile anomalies, intracellular Ca2+ defects, myocardial ultrastructural injury, oxidative stress, apoptosis, and mitochondrial damage, which were overtly attenuated or accentuated by ALDH2 overexpression or knockout, respectively. Diabetic patients also exhibited reduced plasma ALDH2 activity, cardiac remodeling, and diastolic dysfunction. In addition, STZ challenge altered expression levels of mitochondrial proteins (PGC-1α and UCP2) and Ca2+ regulatory proteins (SERCA, Na+-Ca2+ exchanger, and phospholamban), dampened autophagy and mitophagy (LC3B ratio, TOM20, Parkin, FUNDC1, and BNIP3), disrupted phosphorylation of Akt, GSK3β, and Foxo3a, and elevated PTEN phosphorylation, most of which were reversed or worsened by ALDH2 overexpression or knockout, respectively. Furthermore, the novel ALDH2 activator torezolid, as well as the classical ALDH2 activator Alda-1, protected against STZ- or high glucose-induced in vivo or in vitro cardiac anomalies, which was nullified by inhibition of Akt, GSK3β, Parkin, or mitochondrial coupling. Our data discerned a vital role for ALDH2 in diabetic cardiomyopathy possibly through regulation of Akt and GSK3β activation, Parkin mitophagy, and mitochondrial function.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41132705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forty years of HIV research inspires the development of SARS-CoV-2 therapy. 四十年的HIV研究激发了严重急性呼吸系统综合征冠状病毒2型治疗的发展。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad065
Roberto Patarca, William A Haseltine
{"title":"Forty years of HIV research inspires the development of SARS-CoV-2 therapy.","authors":"Roberto Patarca, William A Haseltine","doi":"10.1093/jmcb/mjad065","DOIUrl":"10.1093/jmcb/mjad065","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational study for understanding the impact of p120-catenin on the cis-dimerization of cadherin. 了解p120连环蛋白对钙粘蛋白顺式二聚作用影响的计算研究。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad055
Zhaoqian Su, Vinh H Vu, Deborah E Leckband, Yinghao Wu
{"title":"A computational study for understanding the impact of p120-catenin on the cis-dimerization of cadherin.","authors":"Zhaoqian Su, Vinh H Vu, Deborah E Leckband, Yinghao Wu","doi":"10.1093/jmcb/mjad055","DOIUrl":"10.1093/jmcb/mjad055","url":null,"abstract":"<p><p>A prototype of cross-membrane signal transduction is that extracellular binding of cell surface receptors to their ligands induces intracellular signalling cascades. However, much less is known about the process in the opposite direction, called inside-out signalling. Recent studies show that it plays a more important role in regulating the functions of many cell surface receptors than we used to think. In particular, in cadherin-mediated cell adhesion, recent experiments indicate that intracellular binding of the scaffold protein p120-catenin (p120ctn) can promote extracellular clustering of cadherin and alter its adhesive function. The underlying mechanism, however, is not well understood. To explore possible mechanisms, we designed a new multiscale simulation procedure. Using all-atom molecular dynamics simulations, we found that the conformational dynamics of the cadherin extracellular region can be altered by the intracellular binding of p120ctn. More intriguingly, by integrating all-atom simulation results into coarse-grained random sampling, we showed that the altered conformational dynamics of cadherin caused by the binding of p120ctn can increase the probability of lateral interactions between cadherins on the cell surface. These results suggest that p120ctn could allosterically regulate the cis-dimerization of cadherin through two mechanisms. First, p120ctn controls the extracellular conformational dynamics of cadherin. Second, p120ctn oligomerization can further promote cadherin clustering. Therefore, our study provides a mechanistic foundation for the inside-out signalling in cadherin-mediated cell adhesion, while the computational framework can be generally applied to other cross-membrane signal transduction systems.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41179154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage. 维生素D受体的缺失通过DDIT4介导的DNA损伤触发慢性粒细胞白血病的衰老。
IF 5.3 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad066
Yan Xu, Wentao Qi, Chengzu Zheng, Yuan Li, Zhiyuan Lu, Jianmin Guan, Chunhua Lu, Baobing Zhao
{"title":"Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage.","authors":"Yan Xu, Wentao Qi, Chengzu Zheng, Yuan Li, Zhiyuan Lu, Jianmin Guan, Chunhua Lu, Baobing Zhao","doi":"10.1093/jmcb/mjad066","DOIUrl":"10.1093/jmcb/mjad066","url":null,"abstract":"<p><p>Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50161875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The critical role of BTRC in hepatic steatosis as an ATGL E3 ligase. BTRC作为ATGL E3连接酶在肝脂肪变性中的关键作用。
IF 5.5 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad064
Weiwei Qi, Zhenzhen Fang, Chuanghua Luo, Honghai Hong, Yanlan Long, Zhiyu Dai, Junxi Liu, Yongcheng Zeng, Ti Zhou, Yong Xia, Xia Yang, Guoquan Gao
{"title":"The critical role of BTRC in hepatic steatosis as an ATGL E3 ligase.","authors":"Weiwei Qi, Zhenzhen Fang, Chuanghua Luo, Honghai Hong, Yanlan Long, Zhiyu Dai, Junxi Liu, Yongcheng Zeng, Ti Zhou, Yong Xia, Xia Yang, Guoquan Gao","doi":"10.1093/jmcb/mjad064","DOIUrl":"10.1093/jmcb/mjad064","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the commonest causes of liver dysfunction. Adipose triglyceride lipase (ATGL) is closely related to lipid turnover and hepatic steatosis as the speed-limited triacylglycerol lipase in liver lipolysis. However, the expression and regulation of ATGL in NAFLD remain unclear. Herein, our results showed that ATGL protein levels were decreased in the liver tissues of high-fat diet (HFD)-fed mice, naturally obese mice, and cholangioma/hepatic carcinoma patients with hepatic steatosis, as well as in the oleic acid-induced hepatic steatosis cell model, while ATGL mRNA levels were not changed. ATGL protein was mainly degraded through the proteasome pathway in hepatocytes. Beta-transducin repeat containing (BTRC) was upregulated and negatively correlated with the decreased ATGL level in these hepatic steatosis models. Consequently, BTRC was identified as the E3 ligase for ATGL through predominant ubiquitination at the lysine 135 residue. Moreover, adenovirus-mediated knockdown of BTRC ameliorated steatosis in HFD-fed mouse livers and oleic acid-treated liver cells via upregulating the ATGL level. Taken together, BTRC plays a crucial role in hepatic steatosis as a new ATGL E3 ligase and may serve as a potential therapeutic target for treating NAFLD.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting dysregulated splicing factors in cancer: lessons learned from RBM10 deficiency. 靶向癌症中失调剪接因子:从RBM10缺乏中吸取的经验教训。
IF 5.5 2区 生物学
Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad063
Yongbo Wang, Zefeng Wang
{"title":"Targeting dysregulated splicing factors in cancer: lessons learned from RBM10 deficiency.","authors":"Yongbo Wang, Zefeng Wang","doi":"10.1093/jmcb/mjad063","DOIUrl":"10.1093/jmcb/mjad063","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信