Journal of Materiomics最新文献

筛选
英文 中文
Superb energy density in biomass-based nanocomposites with ultralow loadings of nanofillers 具有超低纳米填料负载的生物质基纳米复合材料的超强能量密度
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-11-06 DOI: 10.1016/j.jmat.2024.100960
Xiang Yu, Chenyi Li, Li Li, Minghai Yao, Hanxiao Gao, Yuquan Liu, Ze Yuan, Shengfei Tang, Quan Luo, Haibo Zhang, Yang Liu, Huamin Zhou
{"title":"Superb energy density in biomass-based nanocomposites with ultralow loadings of nanofillers","authors":"Xiang Yu, Chenyi Li, Li Li, Minghai Yao, Hanxiao Gao, Yuquan Liu, Ze Yuan, Shengfei Tang, Quan Luo, Haibo Zhang, Yang Liu, Huamin Zhou","doi":"10.1016/j.jmat.2024.100960","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100960","url":null,"abstract":"Biomass dielectric polymers hold promise in developing renewable and biodegradable capacitive energy storage devices. However, their typical discharged energy density remains relatively low (&lt;20 J/cm<sup>3</sup>) compared to other existing synthetic polymers derived from petroleum sources. Here a greatly enhanced discharged energy density is reported in diluted cyanoethyl cellulose (CEC) nanocomposites with inclusion of ultralow loadings (0.3%, in volume) of 30-nm-sized TiO<sub>2</sub> nanoparticles. Owing to the interfacial polarization introduced by interface, the composite of 0.3% exhibits a large dielectric constant of 29.2 at 1 kHz, which can be described by interphase dielectric model. Meanwhile, the introduction of nanofillers facilitate the formation of deeper traps impeding electrical conduction in CEC, which results in an ultrahigh breakdown strength of 732 MV/m. As a result, a remarkable discharged energy density of 12.7 J/cm<sup>3</sup> with a charge-discharge efficiency above 90% is achieved, exceeding current ferroelectric-based and biomass-based nanocomposites. Our work opens a novel route for scalable biomass-based dielectrics with high energy storage properties.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging frontiers in metamaterials 超材料的新兴前沿
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-11-05 DOI: 10.1016/j.jmat.2024.100961
Jingbo Sun, Tao Li, Ji Zhou
{"title":"Emerging frontiers in metamaterials","authors":"Jingbo Sun, Tao Li, Ji Zhou","doi":"10.1016/j.jmat.2024.100961","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100961","url":null,"abstract":"More than two decades ago, the experimental demonstration of negative refraction in an artificial structure represented a materials science breakthrough of the 21st century. It is not only an exotic phenomenon beyond the common sense, but also opens up some unprecedented capabilities and functionalities (<em>e.g</em>., super-lens). Since then, the concept “Metamaterials” gained considerable attentions, initially in electromagnetic waves and eventually expanded to different fields, such as optics, acoustics, mechanics, as well as technologies like communication, medical equipment, vibration isolation and energy harvesting, to name a few.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmosphere-driven metal-support synergy in ZnO/Au catalysts for efficient piezo-catalytic hydrogen evolution ZnO/Au 催化剂中大气驱动的金属-支撑协同作用促进高效压电催化氢气进化
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-11-05 DOI: 10.1016/j.jmat.2024.100959
Di Wu, Yingxin He, Chi Lin, Bing Li, Jiangping Ma, Lujie Ruan, Yajie Feng, Chaogang Ban, Junjie Ding, Xiaoxing Wang, Danmei Yu, Li-Yong Gan, Xiaoyuan Zhou
{"title":"Atmosphere-driven metal-support synergy in ZnO/Au catalysts for efficient piezo-catalytic hydrogen evolution","authors":"Di Wu, Yingxin He, Chi Lin, Bing Li, Jiangping Ma, Lujie Ruan, Yajie Feng, Chaogang Ban, Junjie Ding, Xiaoxing Wang, Danmei Yu, Li-Yong Gan, Xiaoyuan Zhou","doi":"10.1016/j.jmat.2024.100959","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100959","url":null,"abstract":"Piezo-catalysis, which leverages mechanical energy to drive chemical reactions, is emerging as a promising method for sustainable energy production. While the enhancement of piezo-catalytic performance through metal-support interactions is well-documented, the critical influence of the synthesis atmosphere during metal-loaded piezo-catalyst preparation has been a notable gap in the field. To this end, we systematically investigate how different atmospheric conditions during the synthesis of catalysts—without gas flow or with Ar, N<sub>2</sub> and O<sub>2</sub>—affect metal dispersion, oxidation states, piezo-carrier dynamics, and electronic structure, and subsequently shape the metal-support interactions and piezo-catalytic activity. ZnO/Au, with Au deposited on ZnO, is selected as the model system, and hydrogen evolution reaction is used as the probe reaction. Our results demonstrate that an oxygen-enriched atmosphere significantly enhances the metal-support interactions, achieving an ultrahigh net hydrogen yield of 16.5 mmol·g<sup>–1</sup>·h<sup>–1</sup> on ZnO/Au, a 3.58-fold increase over pristine ZnO. Specifically, the performance improvements substantially surpass those synthesized under other atmospheric conditions. Conversely, exposure to CO<sub>2</sub> transforms the ZnO support into ZnCO<sub>3</sub>, adversely affecting its catalytic activity. These findings reveal the crucial impact of synthesis conditions on piezo-catalyst performance and thereby open new avenues for optimizing catalyst systems for enhanced sustainability.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-equimolar bismuth-layered [CaxSr(1–x)/3Ba(1–x)/3Pb(1–x)/3]Bi4Ti4O15 high-entropy ceramics with high curie temperature 具有高居里温度的非等摩尔铋层[CaxSr(1-x)/3Ba(1-x)/3Pb(1-x)/3]Bi4Ti4O15 高熵陶瓷
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-10-28 DOI: 10.1016/j.jmat.2024.100945
Mingxin Lu, Yan Fang, Xiaoyu Xu, Xiaoying Feng, Haoqi Xu, Liyang Zhou, Hui Wang, Bin Yan, Chao Chen, Hui Mei, Jie Xu, Feng Gao
{"title":"Non-equimolar bismuth-layered [CaxSr(1–x)/3Ba(1–x)/3Pb(1–x)/3]Bi4Ti4O15 high-entropy ceramics with high curie temperature","authors":"Mingxin Lu, Yan Fang, Xiaoyu Xu, Xiaoying Feng, Haoqi Xu, Liyang Zhou, Hui Wang, Bin Yan, Chao Chen, Hui Mei, Jie Xu, Feng Gao","doi":"10.1016/j.jmat.2024.100945","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100945","url":null,"abstract":"Aurivillius phase ceramics exhibit significant potential in high-temperature piezoelectric devices due to their high Curie temperature. However, the rapid decrease in electrical resistivity at high temperatures limits their application. In this work, a series of non-equimolar high-entropy piezoelectric ceramics [Ca<sub><em>x</em></sub>Sr<sub>(1–<em>x</em>)/3</sub>Ba<sub>(1–<em>x</em>)/3</sub>Pb<sub>(1–<em>x</em>)/3</sub>]Bi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> were designed and prepared via a conventional solid-state method, and the influence of configurational entropy on the microstructure and electrical properties was investigated. The results show that the pure Aurivillius phase was obtained for all compositions. Due to the hysteretic diffusion effect caused by high entropy design, the grain boundary density is effectively increased, leading to a degradation of electrical transport properties. The results of Raman and TEM indicate that disordered structure and various lattice distortions such as edge dislocations, twists, and tilts of oxygen octahedra coexist in high-entropy ceramics, which synergistically contribute to the increase in ceramic electrical resistivity. Consequently, the electrical resistivity at 500 °C increased by 1–2 orders of magnitude, the sample with <em>x</em> = 0.4 exhibits high electrical resistivity (1.18×10<sup>8</sup> Ω·cm), and also boasts a high piezoelectric coefficient (14 pC/N) and an optimal operating temperature (&gt;550 °C). This work highlights a way to obtain high-performance piezoelectric ceramics with high Curie temperature through the non-equimolar high-entropy composition design.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the mechanisms of enhanced piezoelectric properties in (K,Na)NbO3 single crystals 探索 (K,Na)NbO3 单晶压电特性增强的机理
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-10-28 DOI: 10.1016/j.jmat.2024.100943
Da Huo, Biao Wang, Jinhui Fan, Kai Li, Yang Liu, Xudong Qi, Limei Zheng
{"title":"Exploring the mechanisms of enhanced piezoelectric properties in (K,Na)NbO3 single crystals","authors":"Da Huo, Biao Wang, Jinhui Fan, Kai Li, Yang Liu, Xudong Qi, Limei Zheng","doi":"10.1016/j.jmat.2024.100943","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100943","url":null,"abstract":"(K,Na)NbO<sub>3</sub> (KNN)-based piezoelectric materials are candidates for replacing Pb-based materials. However, the piezoelectric properties of existing KNN-based single crystals are still inferior to those of Pb-based relaxor ferroelectric single crystals. Moreover, the piezoelectric response mechanism of KNN-based single crystals remains unclear. In this study, (Li,K,Na)(Nb,Sb,Ta)O<sub>3</sub>:Mn (KNNLST:Mn) single crystals with an excellent piezoelectric coefficient <em>d</em><sub>33</sub> of approximately 778 pC/N were prepared. Systematically studies of intrinsic and extrinsic piezoelectric responses have revealed that the high <em>d</em><sub>33</sub> of KNNLST:Mn single crystals is related to the shear piezoelectric response of a single-domain state and irreversible domain wall motion of the engineering domains. Furthermore, the effect of the orthorhombic (O)-tetragonal (T) phase boundary on intrinsic and extrinsic piezoelectric response is systematically studied, and the impact mechanism is elucidated. The results indicate that a lower dielectric response and elastic constant limit the intrinsic shear piezoelectric response of KNNLST:Mn single crystals, and approaching the O–T phase boundary can enhance both intrinsic and extrinsic piezoelectric responses. This study improves our understanding of the structure-performance relationship in KNN-based single crystals and offers insights for optimizing piezoelectric properties in KNN-based materials.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic algorithm-enabled mechanical metamaterials for vibration isolation with different payloads 采用遗传算法的机械超材料用于不同有效载荷的振动隔离
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-10-15 DOI: 10.1016/j.jmat.2024.100944
Xinyu Song, Sen Yan, Yong Wang, Haojie Zhang, Jiacheng Xue, Tengfei Liu, Xiaoyong Tian, Lingling Wu, Hanqing Jiang, Dichen Li
{"title":"Genetic algorithm-enabled mechanical metamaterials for vibration isolation with different payloads","authors":"Xinyu Song, Sen Yan, Yong Wang, Haojie Zhang, Jiacheng Xue, Tengfei Liu, Xiaoyong Tian, Lingling Wu, Hanqing Jiang, Dichen Li","doi":"10.1016/j.jmat.2024.100944","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100944","url":null,"abstract":"Mechanical vibration isolation with adaptable payloads has always been one of the most challenging topics in mechanical engineering. In this study, we address this problem by introducing machine learning method to search for quasi-zero stiffness metamaterials with arbitrarily predetermined payloads and by employing multi-material 3D printing technology to fabricate them as an integrated part. Dynamic tests demonstrate that both the single- and multi-payload metamaterials can effectively isolate mechanical vibration in low frequency domain. Importantly, the payload of the metamaterial could be arbitrarily designed according to the application scenario and could function at multiple payloads. This design strategy opens new avenues for mechanical energy shielding under various scenarios and under variable loading conditions.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing piezoelectricity and excellent thermal stability: <001>-textured 0.75BF–0.25BT lead-free ceramics for high temperature applications 先进的压电性和出色的热稳定性:用于高温应用的纹理 0.75BF-0.25BT 无铅陶瓷
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-10-13 DOI: 10.1016/j.jmat.2024.100946
Zhangpan Shen, Jian Guo, Xiaoyi Gao, Weidong Xuan, Jiye Zhang, Dawei Wang, Jinrong Cheng, Shujun Zhang, Jianguo Chen
{"title":"Advancing piezoelectricity and excellent thermal stability: <001>-textured 0.75BF–0.25BT lead-free ceramics for high temperature applications","authors":"Zhangpan Shen, Jian Guo, Xiaoyi Gao, Weidong Xuan, Jiye Zhang, Dawei Wang, Jinrong Cheng, Shujun Zhang, Jianguo Chen","doi":"10.1016/j.jmat.2024.100946","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100946","url":null,"abstract":"There is an urgent need for piezoelectric materials possessing both high piezoelectric properties and good thermal stability to facilitate the advancement of high temperature piezoelectric devices. However, conventional strategy for enhancing piezoelectricity via chemical modifications often comes at the cost of thermal stability due to a drop in Curie temperatures. In this study, we achieved remarkable results in &lt;001&gt;-oriented 0.75BiFeO<sub>3</sub>–0.25BaTiO<sub>3</sub> (0.75BF–0.25BT) lead-free textured ceramics. These textured ceramics exhibit a high Curie temperatures <em>T</em><sub>c</sub> of 552 °C, large piezoelectric coefficients <em>d</em><sub>33</sub> of 265 pC/N, and exceptional piezoelectric thermal stability, with minimal variation of 8% across temperature from 25 °C to 300 °C. Compared to randomly oriented ceramics, the piezoelectric coefficient is about 2.5 times higher, marking it as one of the highest reported value for ceramics with <em>T</em><sub>c</sub> near 550 °C. The enhanced piezoelectric properties can be ascribed to improvements in both intrinsic lattice distortions and extrinsic non-180<sup>o</sup> domain motions, while the excellent piezoelectric thermal stability is attributed to the stable domain texture. These superior properties of the studied textured 0.75BF–0.25BT ceramics position them as competitive lead-free candidates for high-temperature piezoelectric applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrathin WOx interfacial layer improving the ferroelectricity and endurance of Hf0.5Zr0.5O2 thin films on polyimide 超薄 WOx 界面层可提高聚酰亚胺上 Hf0.5Zr0.5O2 薄膜的铁电性和耐久性
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-10-03 DOI: 10.1016/j.jmat.2024.100942
Chunxu Zhao, Huiping Wang, Xinyu Gu, Wei Zhang, Yubao Li
{"title":"Ultrathin WOx interfacial layer improving the ferroelectricity and endurance of Hf0.5Zr0.5O2 thin films on polyimide","authors":"Chunxu Zhao, Huiping Wang, Xinyu Gu, Wei Zhang, Yubao Li","doi":"10.1016/j.jmat.2024.100942","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100942","url":null,"abstract":"Here we report substantial effects of inserting PVD-prepared highly-conductive ultrathin WO<sub>x</sub> as interfacial layer in TiN/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>(HZO)/TiN structure on the ferroelectricity of HZO thin films. The prepared TiN/WO<sub><em>x</em></sub>/HZO/WO<sub>x</sub>/TiN capacitor, exhibiting a remnant polarization (<em>P</em><sub>r</sub>) of 18.8 μC/cm<sup>2</sup> at 2 MV/cm and outstanding endurance of over 3.2×10<sup>9</sup> cycles under 10<sup>5</sup> Hz bipolar square field cycling. Furthermore, a scalable transfer technique, in which CVD-grown few-layered graphene thin film is used as a sacrificial layer, is developed for transferring HZO-based ferroelectric stack pre-fabricated on SiO<sub>2</sub>/Si substrate onto a flexible polyimide (PI) membrane, with marginal loss in the ferroelectric properties of HZO. Importantly, mechanical bending testing demonstrates excellent flexibility of TiN/WO<sub><em>x</em></sub>/HZO/WO<sub><em>x</em></sub>/TiN stack, with robust polarization and superb endurance properties being well-maintained even after 10<sup>4</sup> cycles at a small bending radius of 2 mm. Both implementing ultrathin WO<sub><em>x</em></sub> as interfacial layers and utilizing two-dimensional materials assisted transfer technique would be of great value in the development of HfO<sub>2</sub>-based flexible ferroelectric memory.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells 功能添加剂对袋式电池中硅碳复合阳极循环性能的协同作用
IF 9.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-09-25 DOI: 10.1016/j.jmat.2024.100941
Jun Cheng, Zhenyu Huang, Anqi Lu, Aiqi He, Yuxuan Shao, Yuxin Fan, Yunhui Huang
{"title":"Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells","authors":"Jun Cheng, Zhenyu Huang, Anqi Lu, Aiqi He, Yuxuan Shao, Yuxin Fan, Yunhui Huang","doi":"10.1016/j.jmat.2024.100941","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100941","url":null,"abstract":"With increasing application demands of electronics and electric vehicles, the energy density of lithium-ion batteries (LIBs) is expected to be higher and higher. The silicon-based anode materials have triggered global research interest due to low operating voltage and high specific capacity. However, for the Si-based anode, the large volume change during cycling causes cracking and pulverization of Si particles, leading to the sluggish kinetics and poor cycle life. In this work, fluoroethylene carbonate (FEC) and lithium bis(fluorosulfonyl)imide (LiFSI) are used as synergistic functional additives to enhance the performance of silicon–carbon (Si–C) composite anode in pouch cell. The properties of solid electrolyte interphase (SEI) formed on the surface of Si–C composite anode have been systematically investigated. The images of different electrolytes infiltration and gas production after formation are analyzed with ultrasonic transmission scanning technique. DFT calculations are used to illustrate the mechanism. All date collection is at pouch cell level, which is more persuasive.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Air-stable silicon hybrid solar cells constructed via hydrophobic polymer film 通过疏水性聚合物薄膜构建空气稳定硅混合太阳能电池
IF 8.4 1区 材料科学
Journal of Materiomics Pub Date : 2024-08-31 DOI: 10.1016/j.jmat.2024.100935
{"title":"Air-stable silicon hybrid solar cells constructed via hydrophobic polymer film","authors":"","doi":"10.1016/j.jmat.2024.100935","DOIUrl":"10.1016/j.jmat.2024.100935","url":null,"abstract":"<div><div>Silicon (Si) hybrid solar cells have advantages of solution manufacturing process and the potential for achieving low-cost fabrication compared to crystalline Si solar cells. However, the functional layer prepared by solution method usually absorbs water molecules from the air, posing a challenge to the stability of the device. Here, a PEDOT derivative, PEDOT:A, was <em>in situ</em> prepared through the introduction of a fluoropolymer, yielding a strongly hydrophobic film that was assembled into a PEDOT:A/Si hybrid solar cell. The PEDOT:A/Si hybrid solar cells retained 90% of its initial performance after storage in the air for 300 h, while PEDOT:PSS only retained 60% with identical device structure. Meanwhile, first principles calculations indicate that the binding energy between fluoropolymer and water molecule was 3.48 kJ/mol, whereas the binding energy between PSS and water molecule was −5.76 kJ/mol. Benefiting from the weak interaction between fluoropolymer and water molecule, the contact angle of water on PEDOT:A film was 100.84°. After optimization, PEDOT:A/Si hybrid solar cells with ITO achieved a power conversion efficiency of 6.43%, retained 97% of its initial efficiency after testing under same conditions. The development of air-stable hybrid device technology is promising in opening up practical applications of low-cost Si based solar cells.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信