Yingying Yu, Fanyi Meng, Cheng Yang, Linda Qi, Changhao Zhao, Bo Wu, Mao-Hua Zhang
{"title":"Polarization rotation in high-performance KNN-based piezoceramics revealed by an in situ electric field pair distribution function","authors":"Yingying Yu, Fanyi Meng, Cheng Yang, Linda Qi, Changhao Zhao, Bo Wu, Mao-Hua Zhang","doi":"10.1016/j.jmat.2025.101130","DOIUrl":null,"url":null,"abstract":"Understanding the atomic-scale structural dynamics that enable ultrahigh piezoelectric responses in lead-free piezoceramics remains a central challenge in materials science. Here, we employ <em>in situ</em> electric field pair distribution function (PDF) analysis to elucidate the local structural origin of a KNN-based piezoceramic with a nominal composition of 0.964K<sub>0.5</sub>Na<sub>0.5</sub>Nb<sub>0.965</sub>Sb<sub>0.035</sub>O<sub>3</sub>–0.03(Bi<sub>0.5</sub>Na<sub>0.5</sub>)<sub>0.9</sub>(Ga<sub>0.5</sub>Li<sub>0.5</sub>)<sub>0.1</sub>ZrO<sub>3</sub>–0.006BiFeO<sub>3</sub> that has an exceptional piezoelectricity coefficient (<em>d</em><sub>33</sub> > 500 pC/N). Combined Rietveld refinement, PDF fitting, and reverse Monte Carlo simulations revealed the coexistence of long-range tetragonal and orthorhombic phases with local <em>c</em>-type monoclinic symmetry. <em>In situ</em> electric field PDF analyses indicated a reversible polarization rotation between the <001><sub>PC</sub> and <110><sub>PC</sub> directions via a monoclinic plane, with a critical switching field of approximately 0.4 kV/mm. These findings establish polarization rotation, rather than abrupt phase transitions, as the governing mechanism for the enhanced piezoresponse, providing a structural design principle for next-generation lead-free piezoelectrics.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"24 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101130","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the atomic-scale structural dynamics that enable ultrahigh piezoelectric responses in lead-free piezoceramics remains a central challenge in materials science. Here, we employ in situ electric field pair distribution function (PDF) analysis to elucidate the local structural origin of a KNN-based piezoceramic with a nominal composition of 0.964K0.5Na0.5Nb0.965Sb0.035O3–0.03(Bi0.5Na0.5)0.9(Ga0.5Li0.5)0.1ZrO3–0.006BiFeO3 that has an exceptional piezoelectricity coefficient (d33 > 500 pC/N). Combined Rietveld refinement, PDF fitting, and reverse Monte Carlo simulations revealed the coexistence of long-range tetragonal and orthorhombic phases with local c-type monoclinic symmetry. In situ electric field PDF analyses indicated a reversible polarization rotation between the <001>PC and <110>PC directions via a monoclinic plane, with a critical switching field of approximately 0.4 kV/mm. These findings establish polarization rotation, rather than abrupt phase transitions, as the governing mechanism for the enhanced piezoresponse, providing a structural design principle for next-generation lead-free piezoelectrics.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.