超高温陶瓷涂料的多功能设计

IF 9.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yanfei Liu, Ruize Zhang, Shaopu Liu, Jieliang Zhao, Xiaojun Tang, Yanbo Liu
{"title":"超高温陶瓷涂料的多功能设计","authors":"Yanfei Liu, Ruize Zhang, Shaopu Liu, Jieliang Zhao, Xiaojun Tang, Yanbo Liu","doi":"10.1016/j.jmat.2025.101127","DOIUrl":null,"url":null,"abstract":"Ultra-high temperature ceramics (UHTCs) exhibit ultra-high melting points and relatively high mechanical performance, making them ideal coating materials for extreme environment applications like hypersonic vehicles. Recently, novel design strategies of UHTCs coatings have been proposed, mainly including the composition and structural design. In this article, state-of-the-art approaches including multilayer and gradient UHTC coatings for enhanced mechanical and ablation resistance, surface engineering for the improvement of coating adhesion, materials and microstructural design for thermal insulation, laser ablation protection, and drag reduction were reviewed. Furthermore, advanced designing and fabrication techniques for UHTC coatings are also prospected, which can provide insights for the development of next-generation multi-functional UHTC coatings for harsh conditions.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"36 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-functional design of ultra-high temperature ceramics coatings\",\"authors\":\"Yanfei Liu, Ruize Zhang, Shaopu Liu, Jieliang Zhao, Xiaojun Tang, Yanbo Liu\",\"doi\":\"10.1016/j.jmat.2025.101127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high temperature ceramics (UHTCs) exhibit ultra-high melting points and relatively high mechanical performance, making them ideal coating materials for extreme environment applications like hypersonic vehicles. Recently, novel design strategies of UHTCs coatings have been proposed, mainly including the composition and structural design. In this article, state-of-the-art approaches including multilayer and gradient UHTC coatings for enhanced mechanical and ablation resistance, surface engineering for the improvement of coating adhesion, materials and microstructural design for thermal insulation, laser ablation protection, and drag reduction were reviewed. Furthermore, advanced designing and fabrication techniques for UHTC coatings are also prospected, which can provide insights for the development of next-generation multi-functional UHTC coatings for harsh conditions.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2025.101127\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101127","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超高温陶瓷(UHTCs)具有超高熔点和相对较高的机械性能,使其成为高超声速飞行器等极端环境应用的理想涂层材料。近年来,人们提出了新的超高温涂层设计策略,主要包括成分设计和结构设计。本文综述了用于增强机械和抗烧蚀性能的多层和梯度UHTC涂层、用于改善涂层附着力的表面工程、用于隔热、激光烧蚀保护和减阻的材料和微结构设计等最新方法。展望了UHTC涂料的先进设计和制造技术,为开发下一代多功能恶劣条件下的UHTC涂料提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-functional design of ultra-high temperature ceramics coatings

Multi-functional design of ultra-high temperature ceramics coatings
Ultra-high temperature ceramics (UHTCs) exhibit ultra-high melting points and relatively high mechanical performance, making them ideal coating materials for extreme environment applications like hypersonic vehicles. Recently, novel design strategies of UHTCs coatings have been proposed, mainly including the composition and structural design. In this article, state-of-the-art approaches including multilayer and gradient UHTC coatings for enhanced mechanical and ablation resistance, surface engineering for the improvement of coating adhesion, materials and microstructural design for thermal insulation, laser ablation protection, and drag reduction were reviewed. Furthermore, advanced designing and fabrication techniques for UHTC coatings are also prospected, which can provide insights for the development of next-generation multi-functional UHTC coatings for harsh conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信